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Overview

1. Local Model-Agnostic Approaches

2. LIME (Local Interpretable Model-agnostic Explanations)

3. Shapley Value

4. SHAP



1. Model Agnostic 

Approaches
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• Given 
• A already trained model (e.g., modern machine learning models)

• A set of multi-featured data points (training or validation)

• Goal: 
• Compute the contributions of individual features of a data point

Model Agnostic Approaches

Data

Model

SHAP

Prediction

Explanation
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Model Agnostic Approaches

Source: Himmelfarb et al 2002: 1526 (artist: G. Renee Guzlas). All rights reserved ©. 
Reproduced by permission of J. Himmelfarb, P. Stenvinkel, T.A. Ikizler and R. M. Hakim. 
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Model Agnostic Approaches

Source: https://kr.mathworks.com/help/matlab/ref/fsurf.html



2. LIME
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• Mathematical formulation

LIME Local Interpretable Model-agnostic Explanations

explanation 𝑥 = argmin
𝑔∈𝐺

𝐿 𝑓, 𝑔, 𝜋𝑥 + Ω 𝑔

explainable model 

(Lasso or Decision Tree)

proximity measure 

(how large the neighborhood 

around instance x?) 

original function

loss function

model complexity
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1. Select your instance of interest for which you want to have 

an explanation of its black box prediction.

2. Perturb your dataset and get the black box predictions for 

these new points.

3. Weight the new samples according to their proximity to the 

instance of interest.

4. Train a weighted, interpretable model on the dataset with 

the variations.

5. Explain the prediction by interpreting the local model.

Then, how do you get the variations of the data?

https://christophm.github.io/interpretable-ml-book/lime.html

The recipe for training in LIME

https://christophm.github.io/interpretable-ml-book/lime.html
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https://christophm.github.io/interpretable-ml-book/lime.html

Example 1: LIME for Tabular Data

1. Select your instance

of interest for which 

you want to have an 

explanation of its black 

box prediction.

2. Perturb your 

dataset and get 

the black box 

predictions for 

these new points.

3. Weight the new 

samples according to 

their proximity to the 

instance of interest.

4. Train a weighted, 

interpretable 

model on the 

dataset with the 

variations.

https://christophm.github.io/interpretable-ml-book/lime.html
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• LIME depends on kernel width: How do we set the neighborhood?

https://christophm.github.io/interpretable-ml-book/lime.html

Example 1: LIME for Tabular Data

https://christophm.github.io/interpretable-ml-book/lime.html
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• Classify YouTube comments as spam or normal

https://christophm.github.io/interpretable-ml-book/lime.html

Example 2: LIME for Text Data

• How to perturb
• Randomly remove 

words and observe the 

results!

• Weight is calculated as 

1-(1/# of removed words)

https://christophm.github.io/interpretable-ml-book/lime.html
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• Classify YouTube comments as spam or normal

LIME algorithm shows that the word “channel” 

indicates a high probability of spam.

https://christophm.github.io/interpretable-ml-book/lime.html

Example 2: LIME for Text Data

https://christophm.github.io/interpretable-ml-book/lime.html
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• Explaining an image classification prediction made by neural Google’s 
Inception neural network

Image regions are selected by the superpixel methods

https://christophm.github.io/interpretable-ml-book/lime.html

Example 3: LIME for Images

https://christophm.github.io/interpretable-ml-book/lime.html
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Pros:

1. LIME is model-agnostic

2. Explanations are human-friendly

3. It works for tabular data, text and images

4. The fidelity measure proves the reliability of the 

interpretable model

5. Very easy to use

6. Other interpretable features are able to be used 

instead of original model features

Cons:

1. Finding a good neighborhood is unsolved problem

2. Sampling can be wrong (e.g. Gaussian)

3. The complexity should be pre-defined

4. Explanations can be instable

https://christophm.github.io/interpretable-ml-book/lime.html

Pros and Cons for LIME

https://christophm.github.io/interpretable-ml-book/lime.html


3. Shapley Value
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https://christophm.github.io/interpretable-ml-book/shapley.html

Shapley Values

• The Shapley value is the average marginal contribution of a 
feature value across all possible coalitions.

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley value is the average marginal contribution of a 
feature value across all possible coalitions.

https://christophm.github.io/interpretable-ml-book/shapley.html

Shapley Values

https://christophm.github.io/interpretable-ml-book/shapley.html
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• Bike Rental Example

https://christophm.github.io/interpretable-ml-book/shapley.html

Shapley Values

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value of a feature value is its contribution to the 
payout, weighted and summed over all possible feature value
combinations

𝑣𝑎𝑙𝑥(𝑆) is the prediction for feature values in set S that are 

marginalized over features that are not included in set S:

Note that this is a function of S

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Definition

𝑣𝑎𝑙𝑥 𝑆 = න መ𝑓 𝑥1, … , 𝑥𝑝 𝑑ℙ𝑥∉𝑆 − 𝐸𝑋( መ𝑓 𝑋 )

𝑣𝑎𝑙𝑥 𝑆 = 𝑣𝑎𝑙𝑥 𝑥1, 𝑥3 = න
ℝ

න
ℝ

መ𝑓 𝑥1, 𝑋2, 𝑥3, 𝑋4 𝑑ℙ𝑋2𝑋4 − 𝐸𝑋( መ𝑓 𝑋 )

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value of a feature value is its contribution to the 
payout, weighted and summed over all possible feature value
combinations

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Definition

𝜙𝑗 𝑣𝑎𝑙 = 

𝑆⊆ 𝑥1,…,𝑥𝑝 \{𝑥𝑗}

𝑆 ! 𝑝 − 𝑆 − 1 !

𝑝!
(𝑣𝑎𝑙 𝑆 ∪ 𝑥𝑗 − 𝑣𝑎𝑙 𝑆 )

marginal contributionweight

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value of a feature value is its contribution to the 
payout, weighted and summed over all possible feature value
combinations

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Definition

𝜙𝑗 𝑣𝑎𝑙 = 𝐸𝜎∈Π 𝑥1,…,𝑥𝑝
𝑣𝑎𝑙 𝑃𝑗 𝜎 ∪ 𝑥𝑗 − 𝑣𝑎𝑙 𝑃𝑗 𝜎

=
1

𝑛!
𝑣𝑎𝑙 𝑃𝑗 𝜎 ∪ 𝑥𝑗 − 𝑣𝑎𝑙 𝑃𝑗 𝜎

𝜙𝑗 𝑣𝑎𝑙 = 

𝑆⊆ 𝑥1,…,𝑥𝑝 \{𝑥𝑗}

𝑆 ! 𝑝 − 𝑆 − 1 !

𝑝!
(𝑣𝑎𝑙 𝑆 ∪ 𝑥𝑗 − 𝑣𝑎𝑙 𝑆 )

Let 𝑃𝑗 = {𝑥𝑖 ∈ {𝑥1, … , 𝑥𝑝}|𝜎 𝑥𝑖 < 𝜎(𝑥𝑗)}.

EX) 𝜎 = 𝑥2, 𝑥6, 𝑥7, 𝑥3, 𝑥1, 𝑥4, 𝑥5

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value is the only attribution method that satisfies 
the properties 1) Efficiency, 2) Symmetry, 3) Dummy and 4) 
Additivity.

1) Efficiency

The feature contributions must add up to the difference of 

prediction for x and the average.

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Properties



𝑗=1

𝑝

𝜙𝑗 = መ𝑓 𝑥 − 𝐸𝑋( መ𝑓 𝑋 )

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value is the only attribution method that satisfies 
the properties 1) Efficiency, 2) Symmetry, 3) Dummy and 4) 
Additivity.

2) Symmetry

The contributions of two feature values j and k should be the 

same if they contribute equally to all possible coalitions

If for all

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Properties

𝑣𝑎𝑙 𝑆 ∪ 𝑥𝑗 = 𝑣𝑎𝑙(𝑆 ∪ 𝑥𝑘 ) 𝑆 ⊆ 𝑥1, … , 𝑥𝑝 \{𝑥𝑗 , 𝑥𝑘},

𝜙𝑗 = 𝜙𝑘

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value is the only attribution method that satisfies 
the properties 1) Efficiency, 2) Symmetry, 3) Dummy and 4) 
Additivity.

3) Dummy

A feature j that does not change the predicted value (regardless of 

coalition) should have a Shapley value of 0

https://christophm.github.io/interpretable-ml-book/shapley.html

If for all

The Shapley Value Properties

𝑣𝑎𝑙 𝑆 ∪ 𝑥𝑗 = 𝑣𝑎𝑙(𝑆)𝜙𝑗 = 0 𝑆

https://christophm.github.io/interpretable-ml-book/shapley.html
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• The Shapley Value is the only attribution method that satisfies 
the properties 1) Efficiency, 2) Symmetry, 3) Dummy and 4) 
Additivity.

4) Additivity

For a game with combined payouts val+val+, the respective Shapley 

values are as follows:

https://christophm.github.io/interpretable-ml-book/shapley.html

The Shapley Value Properties

𝜙𝑗 + 𝜙𝑗
+

https://christophm.github.io/interpretable-ml-book/shapley.html
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𝑥−𝑗
𝑚

• Computing exact Shapley value is expensive

• Thus Monte-Carlo sampling is used in practice. 

x with a random number of features values replaced by feature 

values from a random data point z, including for the value of feature j.

x1 xj xn

x1 xj xn

x1 xj xn

x with a random number of features values replaced by feature 

values from a random data point z, except for the value of feature j.
x1 xj xn

x1 xj xn

Estimating the Shapley Value 

𝜙𝑗 =
1

𝑀


𝑚=1

𝑀

መ𝑓 𝑥+𝑗
𝑚 − መ𝑓 𝑥−𝑗

𝑚

𝑥+𝑗
𝑚

𝜙𝑗 𝑣𝑎𝑙 =
1

𝑛!
𝑣𝑎𝑙 𝑃𝑗 𝜎 ∪ 𝑥𝑗 − 𝑣𝑎𝑙 𝑃𝑗 𝜎
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• The Pseudo Code for Estimating the Shapley Value

Estimating the Shapley Value 
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Pros:

1. The prediction is fairly distributed among the 

features (no guarantee in LIME)

2. Contrastive Explanations are allowed

3. The Shapley value is the only explanation method 

with a solid theory

4. It is mind-blowing to explain a prediction as a game

Cons:

1. It requires a lot of computing time

2. Easy to be misinterpreted (It is NOT a feature value 

difference after removing the feature)

3. Always use all the features, thus not a selective 

explanation

4. Need access to the data

5. It suffers from inclusion of unrealistic data instances

Pros and Cons for Shapley Value



4. SHAP
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𝑔 𝑧′ = 𝜙0 +

𝑗=1

𝑀

𝜙𝑗𝑧𝑗
′

• In SHAP, the Shapley value explanation is represented as an 
additive feature attribution method, a linear model.

g : explanation model

z’ ∈ {0,1}𝑀: coalition vector (e.g. images in super-

pixel level)

M : maximum coalition size

𝜙𝑗 : feature attribution for a feature j, the Shapley 

values

SHAP (Shapley Additive exPlanations)

Source: https://github.com/PSMM/SLIC-Superpixels

https://github.com/PSMM/SLIC-Superpixels
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• SHAP describes the following three desirable properties:

SHAP Properties

1) Local accuracy

𝑓 𝑥 = 𝑔 𝑧′ = 𝜙0 +

𝑗=1

𝑀

𝜙𝑗𝑧𝑗
′

2) Missingness

𝑧𝑗
′ = 0 ⇒ 𝜙𝑗 = 0

3) Consistency
Let 𝑓𝑥 𝑧′ = 𝑓 ℎ𝑥 𝑧′ and 𝑧 \j

′ indicates that 𝑧𝑗
′ = 0. For any two models 𝑓 and 𝑓′ that satisfy:

𝑓𝑥
′ 𝑧′ − 𝑓𝑥

′ 𝑧\𝑗
′ ≥ 𝑓𝑥 𝑧′ − 𝑓𝑥(𝑧\𝑗

′ )

for all inputs z′ ∈ 0,1 𝑀, then:

𝜙𝑗 𝑓′, 𝑥 ≥ 𝜙𝑗(𝑓, 𝑥)
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Kernel SHAP: Example of 𝒉_𝒙
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Kernel SHAP: Example of 𝒉_𝒙
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SHAP Optimization

𝜋𝑥 𝑥′ =
𝑀 − 1

𝑀
|𝑧′|

|𝑧′|(𝑀 − 𝑧′ )

𝑔 𝑧′ = 𝜙0 +

𝑗=1

𝑀

𝜙𝑗𝑧𝑗
′

𝐿 𝑓, 𝑔, 𝜋𝑥 = 

𝑧′∈𝑍

𝑓 ℎ𝑥 𝑧′ − 𝑔 𝑧′
2
𝜋𝑥(𝑧′)
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• KenrelSHAP esimates for an instance x the contributions of 
each feature value to the prediction

Kernel SHAP
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SHAP Feature Importance

𝑰𝑗 =
𝑖=1

𝑛

|𝜙𝑗
𝑖
|

https://christophm.github.io/interpretable-ml-book/pdp.html

https://christophm.github.io/interpretable-ml-book/pdp.html
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SHAP Summary Plot

https://christophm.github.io/interpretable-ml-book/pdp.html

https://christophm.github.io/interpretable-ml-book/pdp.html
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https://christophm.github.io/interpretable-ml-book/pdp.html

SHAP Dependence Plot

https://christophm.github.io/interpretable-ml-book/pdp.html
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• The Shapely interaction index from game theory is defined as :

when 𝑖 ≠ 𝑗

𝜙𝑖,𝑗 = 

𝑆⊆\{𝑖,𝑗}

𝑆 ! 𝑀 − 𝑆 − 2 !

2 𝑀 − 1 !
𝛿𝑖𝑗(𝑆)

SHAP Interaction Values

𝛿𝑖𝑗 𝑆 = 𝑓𝑥 𝑆 ∪ 𝑖, 𝑗 − 𝑓𝑥 𝑆 ∪ 𝑖 − 𝑓𝑥 𝑆 ∪ 𝑗 + 𝑓𝑥(𝑆)

https://christophm.github.io/interpretable-ml-book/pdp.html

https://christophm.github.io/interpretable-ml-book/pdp.html
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Pros:

1. Solid theoretical foundation with fairly 

distributed prediction among features

2. Contrastive Explanations are allowed

3. Fast implementation for tree-based models

4. Global model interpretations

Cons:

1. KernelSHAP is slow

2. KernelSHAP ignores feature dependence

3. It is possible to create intentionally misleading 

interpretations.

Pros and Cons for SHAP

https://christophm.github.io/interpretable-ml-book/pdp.html

https://christophm.github.io/interpretable-ml-book/pdp.html
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