Bias-to-Text: Debiasing Unknown Visual Biases by Language Interpretation

Jinwoo Shin

KAIST AI

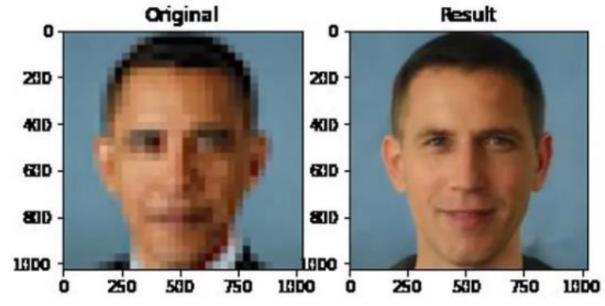
Joint work with Younghyun Kim, Sangwoo Mo, Minkyu Kim, Kyungmin Lee and Jaeho Lee

Biases are everywhere in ML domain

There exist visual biases inherited from ML algorithm in real-world application



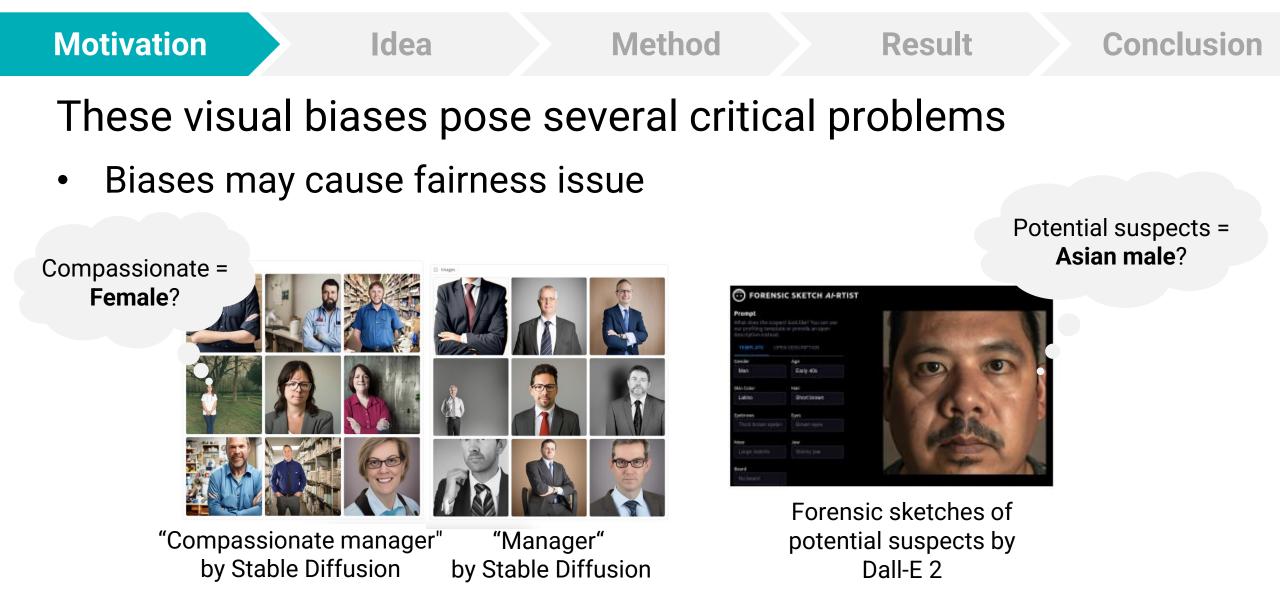
Google Photos automatic tagging



PULSE algorithm: low pixel image to high resolution image

https://www.bbc.com/news/technology-33347866

https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias 2



https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biasedai-image-models-are

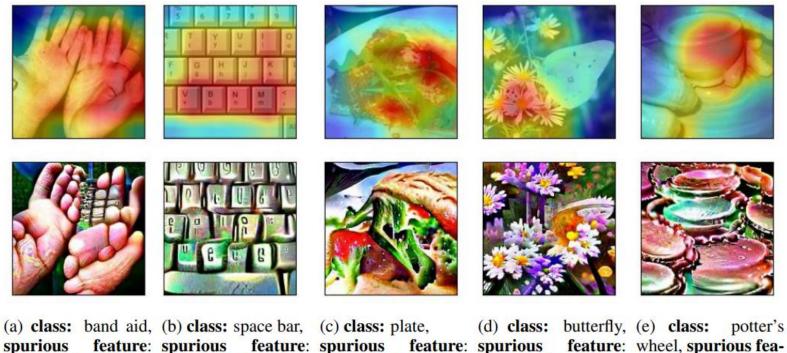
[Luccioni et al., 2023] Stable Bias: Analyzing Societal Representations in Diffusion Models

Motivation Method Result Conclusion Idea These visual biases pose several critical problems Biases may harm model performance ${\color{black}\bullet}$ Common training examples Test examples y: blond hair y: blond hair y: dark hair - UCUS Rare in EDUALING SPC a: female a: male a: male training CelebA examples (bias) Classifier Biased Classifier mispredicts blond male !

[Sagawa et al., 2020] Distributionally Robust Neural Networks for Group Shifts

However, visual biases are not interpretable

- Prior works visualized spurious features, but they are not humanreadable
- Thus, they are hard to be directly utilized for debiasing



food. -32.31%

flowers, -21.54%

ture: vase, -21.54%

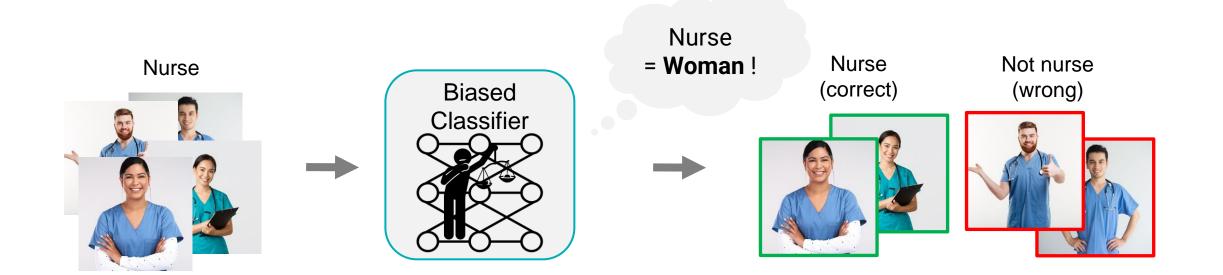
[Singla et al., 2022] Salient ImageNet: How to Discover Spurious Features in Deep Learning

keys, -46.15%

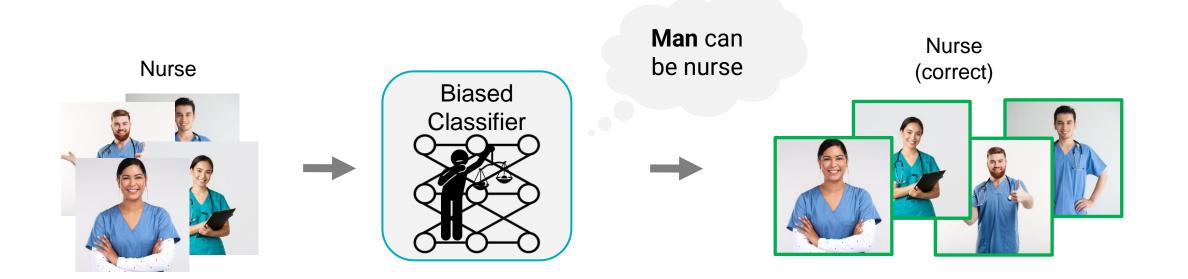
fingers, -41.54%



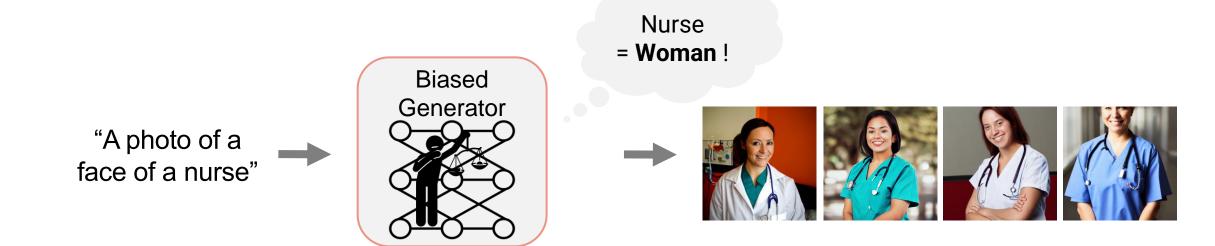
- We apply B2T to classifier and generator
- e.g.) spurious correlation between "nurse" and "woman"



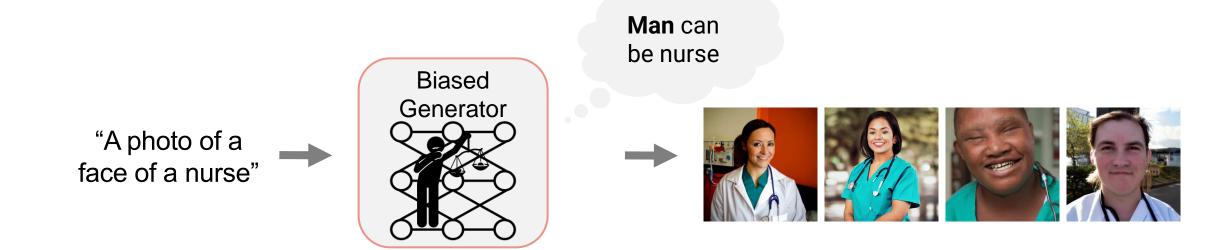
- We apply B2T to classifier and generator
- e.g.) spurious correlation between "nurse" and "woman"



- We apply B2T to classifier and generator
- e.g.) spurious correlation between "nurse" and "woman"

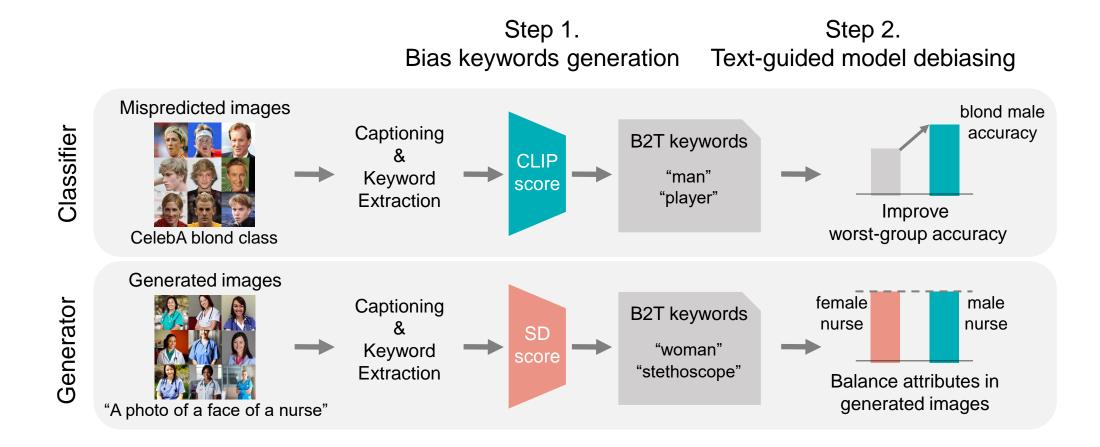


- We apply B2T to classifier and generator
- e.g.) spurious correlation between "nurse" and "woman"

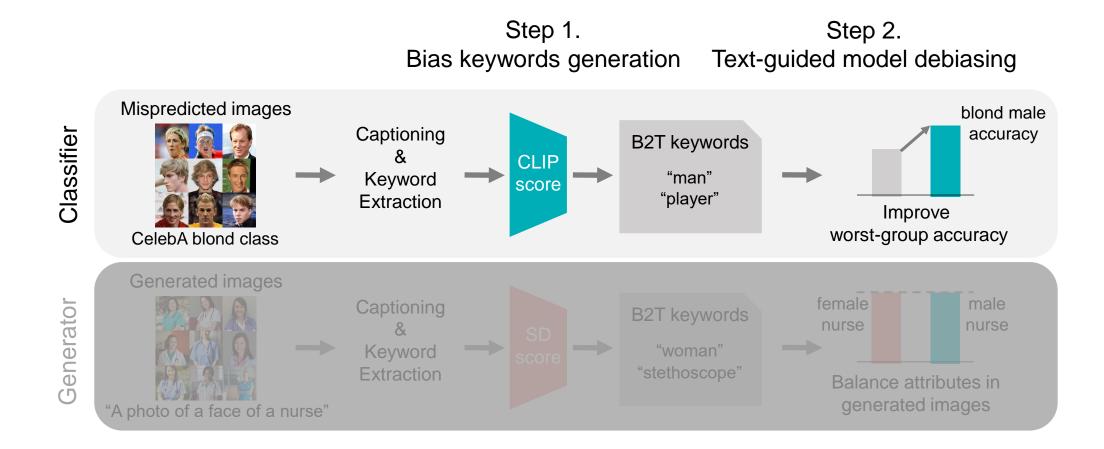


B2T: Bias-to-text

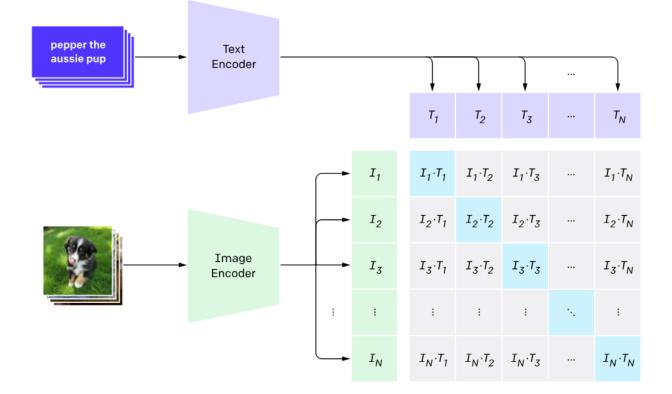
• We first extract B2T keywords, then use them to debias models



• We first **extract** B2T keywords, then use them to **debias** models

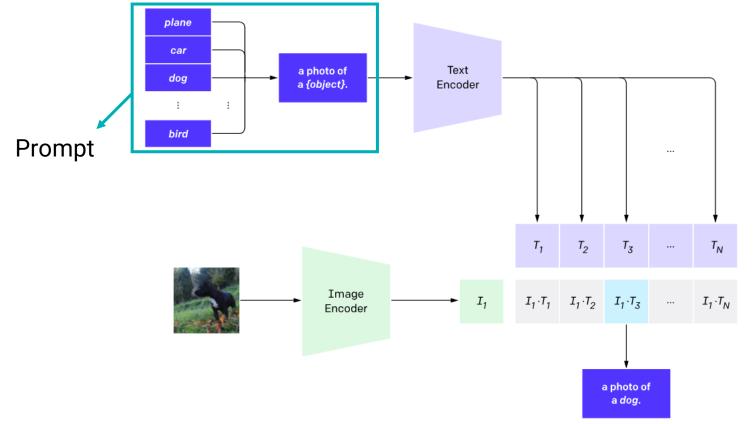


- (Preliminary) What is CLIP?
- CLIP understands images and texts in a joint embedding space



[Radford et al., 2021] Learning Transferable Visual Models From Natural Language Supervision

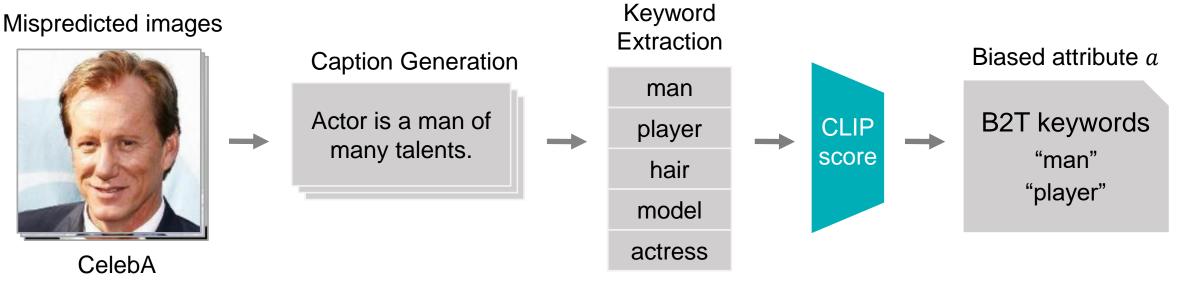
- (Preliminary) What is CLIP?
- CLIP can be used as zero-shot classifier with prompt



[Radford et al., 2021] Learning Transferable Visual Models From Natural Language Supervision

MotivationIdeaMethodResultConclusionB2T for Classifiers - (1) extract B2T keywords

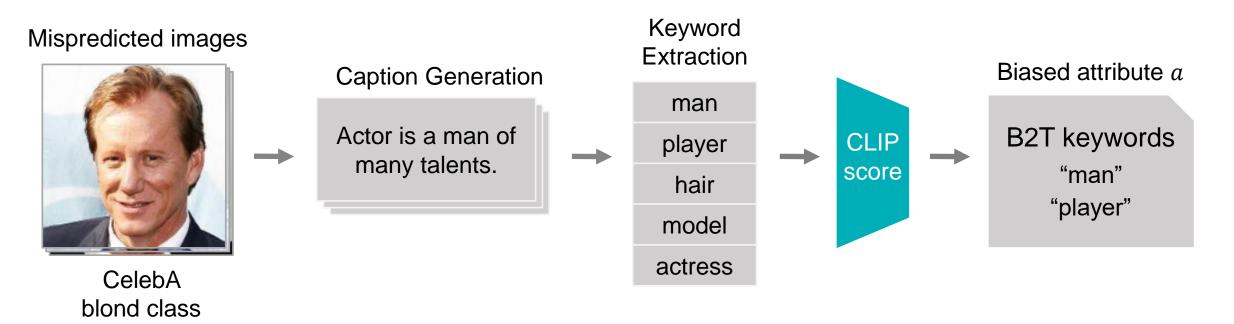
- Mispredicted images may contain biased concept
- Thus, captions of them may contain candidates of B2T keywords



blond class

MotivationIdeaMethodResultConclusionB2T for Classifiers - (1) extract B2T keywords

- Mispredicted images may contain biased concept
- Thus, captions of them may contain candidates of B2T keywords



 \rightarrow Now, these B2T keywords can be directly used to debias classifier

Motivation Idea Method Result Conclusion

B2T for Classifiers - (2) debias models using B2T keywords

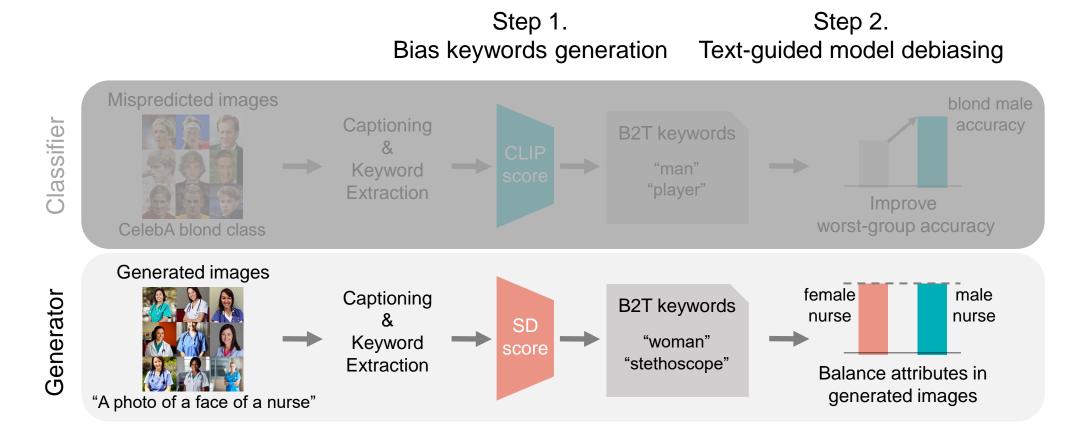
- Augment B2T keywords to the base prompt "a photo of a [class]"
- e.g.) "a photo of a [blond hair] player"

Dataset	Dataset-wise Template	Class Name
CelebA	 [class name] [class name] man [class name] player [class name] person [class name] artist [class name] comedy [class name] film [class name] actor [class name] face 	 Blond blond hair celebrity of blond hair Non blond non blond hair celebrity of non blond hair

Table 12: Prompt designs for debiaisng zero-shot classifiers.

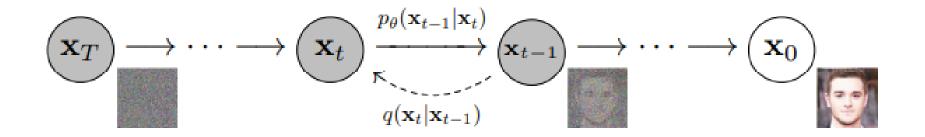
B2T for Generators

• We first **extract** B2T keywords, then use them to **debias** models



B2T for Generators

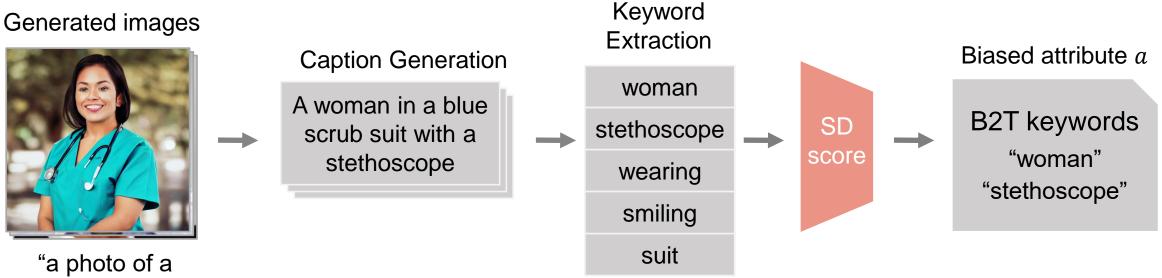
- (Preliminary) What is Stable Diffusion?
- Stable Diffusion generates high-quality images guided by text by progressively refining noise



[Ho et al., 2020] Denoising Diffusion Probabilistic Models

MotivationIdeaMethodResultB2T for Generators - (1) extract B2T keywords

- Generated images may contain unintended concept
- Thus, captions of them may contain candidates of B2T keywords



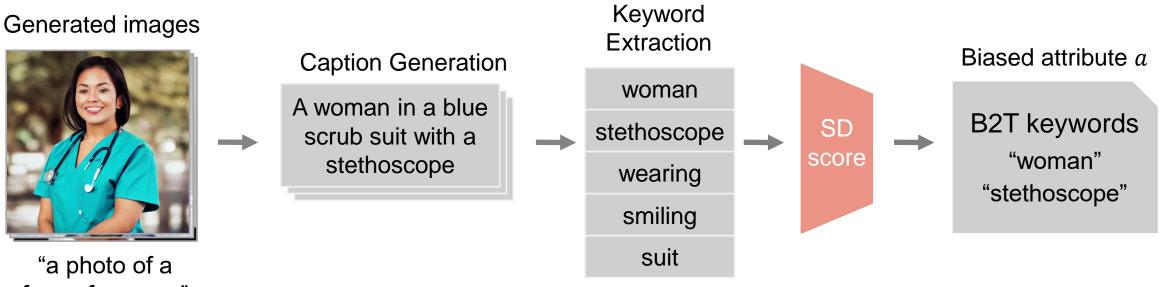
"a photo of a face of a nurse"

Conclusion

Motivation Idea Method Result Conclusion

B2T for Generators - (1) extract B2T keywords

- Generated images may contain unintended concept
- Thus, captions of them may contain candidates of B2T keywords

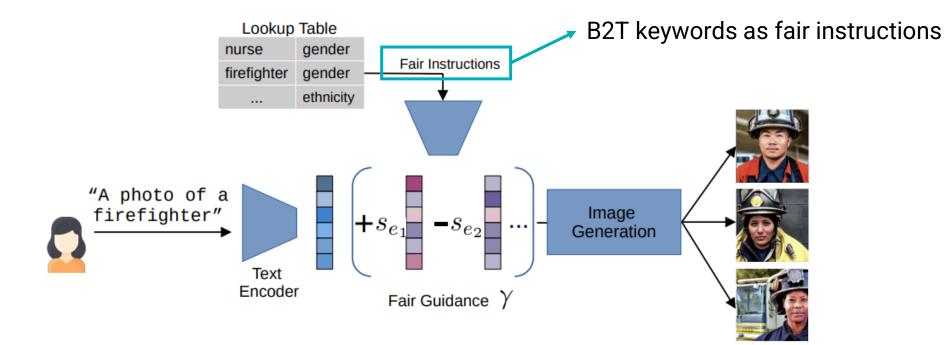


face of a nurse"

 \rightarrow Now, B2T keywords can be directly used to debias generators

B2T for Generators - (2) debias models using B2T Keywords

- Modify diffusion score to project out the direction of B2T keywords
- e.g.) use Fair Diffusion algorithm



[Friedrich et al., 2023] Instructing Text-to-Image Generation Models on Fairness

Why do we need CLIP/SD score?

- Captioning models themselves may have biases
- e.g.) Captioning model tends to describe long blond hair as "long blond"

a **blonde** woman in a gold dress posing for the camera

a woman with **blonde** hair and blue eyes posing for the camera

a woman with **long blonde** hair is posing for the camera

a woman with **long blonde** hair smiling at the camera

Why do we need CLIP/SD score?

- Captioning models themselves may have biases
- e.g.) Captioning model tends to describe long blond hair as "long blond"

a **blonde** woman in a gold dress posing for the camera

a woman with **blonde** hair and blue eyes posing for the camera

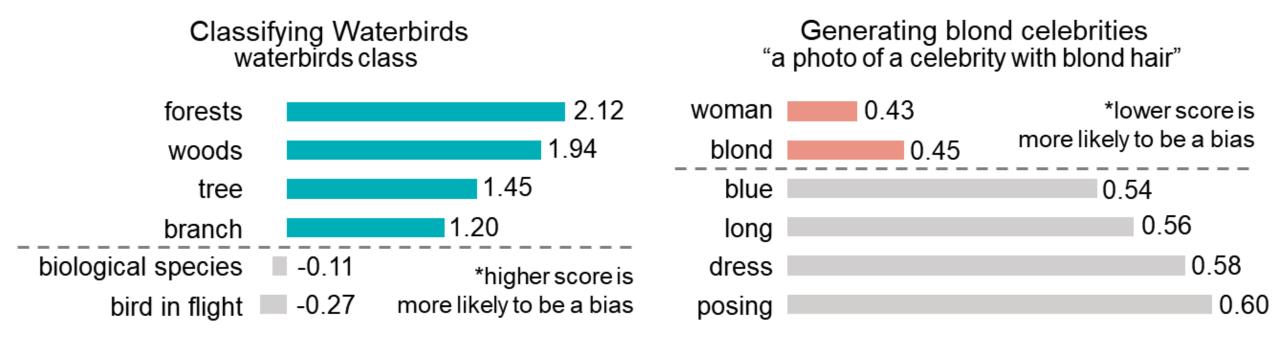
a woman with long blonde hair is posing for the camera

a woman with **long blonde** hair smiling at the camera

 \rightarrow These biases of captioning model should be filtered out

Why do we need CLIP/SD score?

CLIP/SD score successfully filter out biases of captioning model



CLIP score

• CLIP score measures the similarity between keyword *a* and correctly or incorrectly classified images *x* from a validation set *D*

$$s_{\mathsf{CLIP}}(a; \mathcal{D}) := \sin(a, \mathcal{D}_{\mathsf{wrong}}) - \sin(a, \mathcal{D}_{\mathsf{correct}}).$$

SD score

• SD score measures the diffusion score between generated images *x* and the original prompts *y* or bias keywords *a*

$$s_{\mathsf{SD}}(a;y) := \frac{1}{|\mathcal{D}_y|} \sum_{x \in \mathcal{D}_y} ||\mathsf{score}(x;a) - \mathsf{score}(x;y)||.$$

- B2T discovers minority subgroups
- e.g.) "man," "player," "hair" in CelebA

Captionactor is a man of many talents.actor is a man of many faces.the most important player in the history of hockey.football player hasi'm not sure what this is, but i love the color of her hair.actor - i love i want my like this!.	hair i'm not a fan of the sun but i love her hair.
---	--

- B2T discovers minority subgroups
- e.g.) fine-grained background keywords for Waterbirds

Keyword	Forest	Woods	Tree	Branch	Ocean	Beach	Surfer	Boat
Samples								
Actual	waterbird	waterbird	waterbird	waterbird	landbird	landbird	landbird	landbird
Pred.	landbird	landbird	landbird	landbird	waterbird	waterbird	waterbird	waterbird
Caption	the bird of the forest.	the bird of prey in the woods.	a bird in a tree.	a bird on a branch.	a parrot flies over the ocean.	a pelican is seen on the beach.	surfers surfing in the waves.	a yellow - billed stork in a boat.

- B2T discovers distribution shifts
- e.g.) "illustration," "drawing" for ImageNet-R

Keyword	Illustr	ation	Drav	wing
Samples				***
Actual	African chameleon	basketball	American lobster	bee
Pred.	oscilloscope	knee pad	handkerchief	necklace
Caption	vector illustration of a frog.	cartoon illustration of a basketball with an angry expression.	a drawing of a crab.	a drawing of a bee.

- B2T discovers distribution shifts
- e.g.) "snow" for ImageNet-C snow, "window" for ImageNet-C frost

Keyword	Sn	ow	Window		
Samples					
Actual	Afghan hound	Afghan hound	grasshopper	grasshopper	
Pred.	fountain	Afghan hound	African chameleon	grasshopper	
Caption	a horse in the snow.	person, the dog of the day.	a green chameleon on a window sill.	a green grasshopper on my finger.	

Motivation Idea Method Result Conclusion

B2T for Classifiers

- B2T discovers novel biases
- e.g.) "shocked," "player" for Kaggle Face female class,

"girl" for Kaggle Face male class

Keyword	Shocked	Player	G	irl
Samples			-	10-10-
Actual	female	female	male	male
Pred.	male	male	female	female
Caption	person,[], said she was shocked by the abuse.	person was the first player to be named person.	the girl's face is a bit of a mess.	person, pictured with her mother, was a very shy girl.

- B2T discovers novel biases
- e.g.) geographical bias of Dollar Street

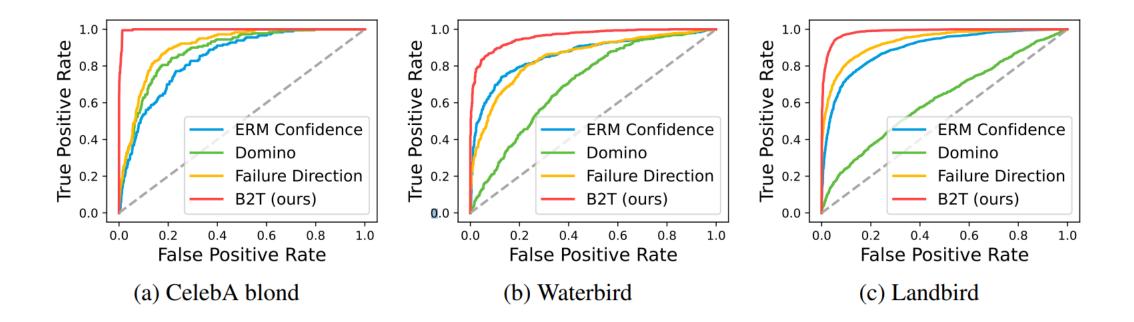
Keyword	-	Cave	-	Fire	
Samples					
Actual	wardrobe	wardrobe	stove	stove	
Pred.	wardrobe	poncho	stove	caldron	
Caption	the back of the wardrobe.	the cave is full of surprises.	a stove for the kitchen.	a fire in the kitchen.	
	Country (Incor	ne)			
	Romania (\$6256/month)	Tanzania (\$32/month)	United States (\$855/month)	Togo (\$321/month)	

MotivationIdeaMethodResultConclusion

- B2T discovers novel biases
- e.g.) ImageNet class-wise biases

Keyword	С	at	Sn	ow	Fc	prest	Gr	ass
Samples								
Actual	toilet tissue	toilet tissue	Australian terrier	Australian terrier	hog	hog	terrapin	terrapin
Pred.	paper towel	papertowel	Tibetan terrier	Irish terrier	wildboar	wildboar	box turtle	mud turtle
Caption	cat playing with a papercup.	cat playing with a paper bag.	person, a mix, playing in the snow.	dog in the snow, winter.	wild boar in the forest.	wild pigs in the forest.	a turtle on the grass.	turtle on the grass in the garden.

- B2T better discovers known biases than prior works
- AUROC curves for (a) CelebA blond, (b) Waterbird, and (c) Landbird



 B2T-augemented prompts better debias CLIP zero-shot classifier than oracle group names

	CelebA blond		Waterbirds	
	Worst	Avg.	Worst	Avg.
Base prompt [18]	76.2	85.2	50.3	72.7
+ Group names [50]	76.7	87.0	53.7	78.0
+ B2T-neg	72.9	88.0	45.4	70.8
+ B2T-pos (ours)	80.0	87.2	61.7	76.9

• B2T can also debias **unknown biases** with B2T keywords

	IN-R	IN-C snow	IN-C frost
	RN / ViT	RN / ViT	RN / ViT
Base prompt [18]	37.1 / 84.3	14.1 / 64.1	16.7 / 63.7
+ B2T-pos (ours)	41.1 / 86.2	15.4 / 65.4	17.6 / 65.3
80-prompt [18]	41.3 / 86.7	16.0 / 66.0	18.6 / 66.0
+ B2T-pos (ours)	42.2 / 87.0	16.7 / 66.4	18.7 / 66.3

Motivation Idea Method Result Conclusion

B2T for Generative Models

• B2T discovers unfair images

Prompt: "a photo of a face of a **nurse**" B2T keywords: **woman, stethoscope, blue**

Prompt: "a photo of a face of a **construction worker**" B2T keywords: **man, hardhat, site**

Prompt: "a photo of a face of a **maid**" B2T keywords: **woman, girl, young, asian**

Prompt: "a photo of a face of a **native American**" B2T keywords: **man, indian, feathers**

B2T for Generative Models

• B2T discovers unsafe images

Prompt: "the four horsewomen of the apocalypse, […]" B2T keywords: **naked**

Added by authors for publication

Prompt: "award winning photo of lars von tied up crying, [...]" B2T keywords: **blood, naked, neck**

* Blurred by authors for publication

[Schramowski et al., 2022] Mitigating Inappropriate Degeneration in Diffusion Models

B2T for Generative Models

• B2T successfully debiases unfair images

Original Stable Diffusion

Debiased by B2T (ours)

B2T for Generative Models

• B2T successfully debiases unsafe images

Original Stable Diffusion

Debiased by B2T (ours)

