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Biases are everywhere in ML domain

Motivation Idea Method Result Conclusion

2

Google Photos automatic tagging
PULSE algorithm: low pixel image to high resolution image

• There exist visual biases inherited from ML algorithm in real-world 
application

https://www.bbc.com/news/technology-33347866 
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias 

https://www.bbc.com/news/technology-33347866
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias


These visual biases pose several critical problems

Motivation Idea Method Result Conclusion
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• Biases may cause fairness issue

“Compassionate manager"  
by Stable Diffusion

“Manager“
by Stable Diffusion 

Forensic sketches of 
potential suspects by 

Dall-E 2

Potential suspects = 
Asian male?Compassionate = 

Female?

https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biased-

ai-image-models-are

[Luccioni et al., 2023] Stable Bias: Analyzing Societal Representations in Diffusion Models

https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biased-ai-image-models-are
https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biased-ai-image-models-are
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These visual biases pose several critical problems
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• Biases may harm model performance

[Sagawa et al., 2020] Distributionally Robust Neural Networks for Group Shifts

Biased 

Classifier

Classifier 
mispredicts
blond male !



However, visual biases are not interpretable

Motivation Idea Method Result Conclusion

5

• Prior works visualized spurious features, but they are not human-
readable

• Thus, they are hard to be directly utilized for debiasing

[Singla et al., 2022] Salient ImageNet: How to Discover Spurious Features in Deep Learning



Our idea is to use language to interpret visual biases

Motivation Idea Method Result Conclusion

• Interpreting visual biases as “language” enables following benefits:

Classifier

“man”

“(sports) player” 

B2T Keywords

Generator
Generated nurse images

“A photo of a face of a nurse”

“woman”

“stethocscope” 

B2T Keywords

Attributes in generated images (%)

female

nurse

base 

prompt

+ group

prompt

+ B2T

prompt

(ours)

76.2 76.7
80.0

Worst-group accuracies (%)

male

nurse

female

nurse

male

nurse

100

0

52.0 48.0

* worst-group = blond male * balance female and male

(1) Discover novel biases (2) Debias model effectively
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Mispredicted blond images

CelebA blond class



Motivation Idea Method Result Conclusion

• We apply B2T to classifier and generator

• e.g.) spurious correlation between “nurse” and “woman”
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Nurse 
= Woman ! Nurse

(correct)

Not nurse

(wrong)
Nurse

Biased 

Classifier

Our idea is to use language to interpret visual biases
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• We apply B2T to classifier and generator

• e.g.) spurious correlation between “nurse” and “woman”
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Man can 
be nurse

Nurse

(correct)Nurse

Biased 

Classifier

Our idea is to use language to interpret visual biases
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• We apply B2T to classifier and generator

• e.g.) spurious correlation between “nurse” and “woman”
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Nurse 
= Woman !

Biased 

Generator

“A photo of a 

face of a nurse”

Our idea is to use language to interpret visual biases
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• We apply B2T to classifier and generator

• e.g.) spurious correlation between “nurse” and “woman”
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Man can 
be nurse

Biased 

Generator

“A photo of a 

face of a nurse”

Our idea is to use language to interpret visual biases



B2T: Bias-to-text
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Captioning 

&

Keyword 

Extraction

Step 2. 

Text-guided model debiasing

CLIP

score

C
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Step 1. 

Bias keywords generation

B2T keywords

Improve

worst-group accuracy

“man”

“player”

blond male 

accuracy

Mispredicted images

CelebA blond class

Captioning 

&

Keyword 

Extraction

SD

score

G
e

n
e
ra

to
r

B2T keywords

Balance attributes in 

generated images

“woman”

“stethoscope”

Generated images

“A photo of a face of a nurse”

female

nurse

male

nurse

• We first extract B2T keywords, then use them to debias models
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B2T for Classifiers

• We first extract B2T keywords, then use them to debias models



B2T for Classifiers
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• (Preliminary) What is CLIP?

• CLIP understands images and texts in a joint embedding space 

[Radford et al., 2021] Learning Transferable Visual Models From Natural Language Supervision



B2T for Classifiers
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• (Preliminary) What is CLIP?

• CLIP can be used as zero-shot classifier with prompt

Prompt

[Radford et al., 2021] Learning Transferable Visual Models From Natural Language Supervision



B2T for Classifiers - (1) extract B2T keywords
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• Mispredicted images may contain biased concept

• Thus, captions of them may contain candidates of B2T keywords

Mispredicted images

CelebA

blond class

A bird in the forest. A bird in the forest. 
Actor is a man of 

many talents.

man

player

hair

model

actress

Caption Generation

Keyword 

Extraction

CLIP

score

B2T keywords

“man”

“player”

Biased attribute 𝑎



B2T for Classifiers - (1) extract B2T keywords
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Mispredicted images

CelebA

blond class

A bird in the forest. A bird in the forest. 
Actor is a man of 

many talents.

man

player

hair

model

actress

Caption Generation

Keyword 

Extraction

CLIP

score

B2T keywords

“man”

“player”

Biased attribute 𝑎

→ Now, these B2T keywords can be directly used to debias classifier

• Mispredicted images may contain biased concept

• Thus, captions of them may contain candidates of B2T keywords
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• Augment B2T keywords to the base prompt “a photo of a [class]”

• e.g.) “a photo of a [blond hair] player”

B2T for Classifiers - (2) debias models using B2T keywords
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B2T for Generators

• We first extract B2T keywords, then use them to debias models



B2T for Generators
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• (Preliminary) What is Stable Diffusion?

• Stable Diffusion generates high-quality images guided by text by 
progressively refining noise

[Ho et al., 2020] Denoising Diffusion Probabilistic Models
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B2T for Generators - (1) extract B2T keywords

• Generated images may contain unintended concept

• Thus, captions of them may contain candidates of B2T keywords

A bird in the forest. A bird in the forest. 

A woman in a blue 

scrub suit with a 

stethoscope

woman

stethoscope

wearing

smiling

suit

Caption Generation

Keyword 

Extraction

SD

score

B2T keywords

“woman”

“stethoscope”

Biased attribute 𝑎

Generated images

“a photo of a 

face of a nurse”
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B2T for Generators - (1) extract B2T keywords

A bird in the forest. A bird in the forest. 

A woman in a blue 

scrub suit with a 

stethoscope

woman

stethoscope

wearing

smiling

suit

Caption Generation

Keyword 

Extraction

SD

score

B2T keywords

“woman”

“stethoscope”

Biased attribute 𝑎

Generated images

“a photo of a 

face of a nurse”

→ Now, B2T keywords can be directly used to debias generators

• Generated images may contain unintended concept

• Thus, captions of them may contain candidates of B2T keywords
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• Modify diffusion score to project out the direction of B2T keywords

• e.g.) use Fair Diffusion algorithm

B2T keywords as fair instructions

B2T for Generators - (2) debias models using B2T Keywords

[Friedrich et al., 2023] Instructing Text-to-Image Generation Models on Fairness



Why do we need CLIP/SD score?
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• Captioning models themselves may have biases
• e.g.) Captioning model tends to describe long blond hair as “long blond”

a blonde woman in 
a gold dress 

posing for the 
camera

a woman with 
blonde hair and 

blue eyes posing 
for the camera

a woman with long
blonde hair is 
posing for the 

camera

a woman with long
blonde hair smiling 

at the camera



Why do we need CLIP/SD score?
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• Captioning models themselves may have biases
• e.g.) Captioning model tends to describe long blond hair as “long blond”

a blonde woman in 
a gold dress 

posing for the 
camera

a woman with 
blonde hair and 

blue eyes posing 
for the camera

a woman with long
blonde hair is 
posing for the 

camera

a woman with long
blonde hair smiling 

at the camera

→ These biases of captioning model should be filtered out



Why do we need CLIP/SD score?
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• CLIP/SD score successfully filter out biases of captioning model 



CLIP score
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• CLIP score measures the similarity between keyword 𝑎 and 
correctly or incorrectly classified images 𝑥 from a validation set 𝒟



SD score
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• SD score measures the diffusion score between generated images 
𝑥 and the original prompts 𝑦 or bias keywords 𝑎



Motivation Idea Method Result Conclusion
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• B2T discovers minority subgroups

• e.g.) “man,” “player,” “hair” in CelebA

B2T for Classifiers
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B2T for Classifiers

• B2T discovers minority subgroups

• e.g.) fine-grained background keywords for Waterbirds
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B2T for Classifiers

• B2T discovers distribution shifts
• e.g.) “illustration,” “drawing” for ImageNet-R
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B2T for Classifiers

• B2T discovers distribution shifts
• e.g.) “snow” for ImageNet-C snow, “window” for ImageNet-C frost
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B2T for Classifiers

• B2T discovers novel biases
• e.g.) “shocked,” “player” for Kaggle Face female class, 

“girl” for Kaggle Face male class



Motivation Idea Method Result Conclusion

33

B2T for Classifiers

• B2T discovers novel biases

• e.g.) geographical bias of Dollar Street
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B2T for Classifiers

• B2T discovers novel biases

• e.g.) ImageNet class-wise biases
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B2T for Classifiers

• B2T better discovers known biases than prior works

• AUROC curves for (a) CelebA blond, (b) Waterbird, and (c) Landbird
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B2T for Classifiers

• B2T-augemented prompts better debias CLIP zero-shot classifier 
than oracle group names
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B2T for Classifiers

• B2T can also debias unknown biases with B2T keywords
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B2T for Generative Models

• B2T discovers unfair images
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B2T for Generative Models

• B2T discovers unsafe images

[Schramowski et al., 2022] Mitigating Inappropriate Degeneration in Diffusion Models
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B2T for Generative Models

• B2T successfully debiases unfair images
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B2T for Generative Models

• B2T successfully debiases unsafe images



• We interpret visual biases as language that enables:

Classifier

“man”

“(sports) player” 

B2T Keywords

Generator
Generated nurse images

“A photo of a face of a nurse”

“woman”

“stethocscope” 

B2T Keywords

Attributes in generated images (%)

female

nurse

base 

prompt

+ group

prompt

+ B2T

prompt

(ours)

76.2 76.7
80.0

Worst-group accuracies (%)

male

nurse

female

nurse

male

nurse

100

0

52.0 48.0

* worst-group = blond male * balance female and male

(1) Discover novel biases (2) Debias model effectively

42

Mispredicted blond images

CelebA blond class

Motivation Idea Method Result Conclusion

B2T: Bias-to-Text
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