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ABSTRACT

Although there has been continuous growth of explainable AI (XAI)
in the field of computer vision and natural language processing, inter-
pretability in the field of time series is yet to gather much attention.
However, the importance of interpretability is very high in time series
data such as in the high-risk medical domain: Electrocardiogram-
based heartbeat classification and arrhythmia detection. The lack of
interpretability of state-of-the-art heart disease classification methods
hamper the deployment of the models in real-world clinical settings.
Moreover, existing perturbation-based and gradient-based XAI meth-
ods are feature importance based algorithms, which do not consider
the difficulty of explanation depending on the dataset. In this paper,
we propose a novel evaluation metric to assess the difficulty of XAI in
time-series datasets using Area Under the Receiver Operating Char-
acteristics (AUROC). This evaluation method observes the change in
AUROC value depending on the number of important features used,
while the unused features are masked. The important features are
obtained from various state-of-the-art XAI methods such as Local In-
terpretable Model-agnostic Explanations (LIME), SHapley Additive
exPlanations (SHAP), Permutation Feature Importance (PFI), and
Integrated Gradients (IG). To best visualize the representative shape
of each class, we first quantize the raw time series signals with Vector
Quantized Variational-Autoencoder constructed in non-overlapping
CNN layers to retain independent receptive fields. We compare the
results using three different generated time-series datasets to show
how the dataset difficulties effect our proposed AUROC evaluation
metric. We present quantitative and qualitative results among various
methods and datasets in our experiments section.

Index Terms— time-series, explainable AI

1. INTRODUCTION

Time-series represent any variable that changes over time. This type
of data is important in various fields such as in healthcare [1, 2], fi-
nance [3], and audio [4, 5]. The expanding importance of time-series
data across many domains promote many AI researchers to utilize
this type of data for various downstream tasks such as classification,
forecasting, and synthesis. However, most state-of-the-art methods
in time-series are not interpretable. Therefore, a barrier exists in
deploying these models because users lack trust and the models are
prone to unexplainable errors for high-risk tasks. In order to mitigate
this problem, previous works attempted to use state-of-the-art explain-
able AI methods in computer vision and natural language processing
domains to enable interpretability in the time-series domain. Most of
these methods are model-agnostic, which means the tool can be used
in any machine-learning model, and it is not constrained to a specific
single model.

There are four widely-used model-agnostic state-of-the-art meth-
ods, which will be used to determine the feature importance before

calculating the AUROC score of our proposed evaluation method.
The first method is Local Interpretable Model-agnostic Explanation
(LIME) [6], which perturbs the feature values of each sample and
observes the resulting impact on the output. The second method is
Kernel SHAP [7], which is a combination between LIME and Shap-
ley values. It is similar to LIME but uses shapley kernels instead
of exponential kernels for linear regression weight calculation. The
third method is Permutation Feature Importance (PFI) [8] and rep-
resents ranking based on the decrease in model score when a single
feature value is randomly shuffled. Finally, Integrated Gradients [9]
attribute the predictions of a classification model to its input features
by computing the gradient of the output with respect to the inputs.

The strongest limitation of previous state-of-the-art XAI methods
is that the models assume any given input dataset is explainable. In
other words, even if a dataset is highly complex to be interpretable for
human users, the models output explanation using perturbation-based
or gradient-based methods. These outputs do not provide any insight-
ful or consistent human-understandable explanations. Therefore, it is
crucial to measure the interpretability difficulty of a dataset to assess
its’ possibility of explanation.

We propose an assessment method with AUROC scores and
masked features utilizing feature importance rankings provided by
the four model-agnostic state-of-the-art XAI methods. The raw time-
series data are first quantized to encoding indices with VQ-VAE [10].
The benefit of using neural discrete representations is two fold: First,
a small number of patterns are learned depending on the size of the
codebook, which leads to a regularization effect on the time-series
data that contains high noise. Second, the important discrete features
can later be visualized with VQ-VAE decoder as a representative
time-series segment of the input dataset. Thus, we incorporate non-
overlapping convolutional layers to the VQ-VAE architecture by
matching kernel size and stride, which enables the receptive field of
the discrete features to be independent to each other.

In this paper, we present a framework to determine the inter-
pretability difficulty of a time-series dataset. This framework contains
three phases: In the first phase, raw time-series dataset is quantized
and a blackbox classifier is trained using the discrete representations.
When training the VQ-VAE, kernel and stride size are set equal to
each other. In the second phase, previous model-agnostic state-of-
the-art methods are utilized to provide feature importance rankings
of the quantized inputs. Finally, in the third phase, our proposed
AUROC-based evaluation method and feature importance rankings
provided from the second phase outputs AUROC scores, which rep-
resents interpretability difficulty scores. We present experiments in
three different datasets that represent various interpretability diffi-
culty levels. Also, we compare the performance in the four different
state-of-the-art XAI methods.



1d CNN
encoder

1d CNN 
decoder

... ...

Codebook

Quantized ECG

... ... ... ...

... ...

... ...

Classification Model

Original

Perturbed Randomly

Input ECG
Reconstructed 

ECG

Fig. 1: The overall framework for VQ-VAE, Classification, and perturbation. The VQ-VAE quantizes the input time-series data (ex. ECG)
and the quantized time-series tokens are used as input to train the classification model. Perturbations of the time-series tokens are utilized to
determine feature importance rankings for area under AUROC calculations.

2. MODEL ARCHITECTURE

Our model architecture consists of VQ-VAE, classification model, and
AUROC calculation based on feature masking. Fig.1 represents the
overall architecture of our proposed framework. In the intermediate
step before the AUROC evaluations, previous model-agnostic state-
of-the-art XAI methods are used to determine the important features.

2.1. VQ-VAE

As mentioned earlier, there are two main advantages of using VQ-
VAE to quantize raw time-series data: As a regularization effect on
the noise, and interpretable visualizer to represent a dataset repre-
sentative segment. For the first advantage, there has already been
work done in various domains to understand and utilize VQ-VAE as
regularization to various noise [11, 12]. In the process of quantizing
the continous signals into discrete codebooks, unnecessary informa-
tion such as jitters are reduced. For the second advantage, our main
motivation for representing time-series data into discrete tokens was
to explore the patterns contained within each token, and visualize
them after determining the most important tokens. However, the
tokens will be difficult to visualize if the receptive field of each token
with respect to the original signal is overlapped by the convolutional
layers. Therefore, we use non-overlapping convolutional layers in the
VQ-VAE encoder and decoder.

VQ-VAE training process contains three parts, which are encoder,
a codebook, and decoder. The encoder E consists of four convolu-
tional layers to downsample the 12-lead ECG signal. The codebook
C, also defined as the latent embedding space, consists of code vec-
tors ck ∈ RK×d, where K represents the codebook size and d the
dimension of each code vector ck, k ∈ 1, 2, ...,K. Given a raw ECG
signal x ∈ RL×T with L leads and T timesteps, x goes through
the encoder to produce output l̂ = Ec(x) ∈ RT ′×d, where T ′ is
the reduced time dimension after downsampling. The output after

quantization Eq(.) process is as follows:

Eq(l̂) := (argmin
ck∈C

∥l̂i − ck∥22 for all i in T ′)

Then, the decoder U reconstructs the input x̂ = U(Eq(l̂)). The entire
process is trained with the following loss function:

LV Q = ∥x− x̂∥22+∥sg[Ec(x)]−Eq(l̂)∥22+∥sg[Eq(l̂)]−Ec(x)∥22

where sg stands for stop-gradient, which is an identity during the
forward pass and zero gradient during the backward propagation.

2.2. Classification Model

The classification model takes in encoding indices trained by VQ-
VAE as input and outputs logits for two classes (binary classification).
This classification model serves two purposes: First, as a blackbox
model when locating important features with the four XAI methods.
Second, as an evaluator for AUROC calculations.

LIME, SHAP, PFI, and IG all require a blackbox model for their
interpretations. Although they are model-agnostic, the XAI methods
still require a model to interpret. In our case we compare three
different classification (blackbox) models: Convolutional Neural
Network (CNN), Transformer Encoder, and CNN + Transformer
models. The advantage of using model-agnostic XAI methods is
that various classification models can be used and compared. We
display the performance of each classification models in our AUROC
evaluation method in the experiments section.

2.3. Model-agnostic XAI Methods

LIME examines the effect of giving variations of data into the black-
box model by observing the outcome. The method generated a new
dataset that consists of perturbed samples and corresponding predic-
tions. Then, LIME trains a interpretable model (linear regression)



Classifier Method AUROC vs. Number of features
mitbih flat peak

CNN

LIME 0.877 1 0.973
SHAP 0.921 1 0.997
IG 0.885 1 0.960
PFI 0.828 1 0.894

Transformer

LIME 0.873 1 1
SHAP 0.937 1 1
IG 0.923 0.9996 0.998
PFI 0.940 1 1

CNN+Trans.

LIME 0.901 0.998 0.962
SHAP 0.869 0.998 0.908
IG 0.891 0.996 0.833
PFI 0.887 0.998 0.930

Table 1: The table shows area under AUROC values depending on the
number of unmasked features using positional rankings determined
by four different model-agnostic XAI methods. Three different clas-
sifiers are compared.

Dataset VQVAE reconstruction loss
hard_mitbih 0.00380

flat 0.0231
peak 0.0578

Table 2: Reconstruction loss of VQ-VAE

Test accuracyClassifier mitbih flat peak
CNN 0.930 1 1
Transformer 0.958 1 1
CNN+Trans. 0.971 1 1

Table 3: The test classification accuracy of three different classifier
models in three different datasets.

with weights representing the proximity between target sample and
generated perturbations. The formula is as shown below:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

where the explanation model for instance x is the linear regression
model g. f is the original blackbox model, and Ω(g) denotes the
complexity of the model. G is the family of possible explanations.
In LIME, the exponential kernel is used to assign weights to the
perturbed samples as follows:

K(x, xi) = exp

(
−d(x, xi)

σ2

)
(2)

Here, x represents the instance of interest, xi represents a perturbed
sample, and d(x, xi) represents the distance with σ a parameter that
controls the decay of the weights. The Kernel SHAP method is

(a) MIT-BIH (b) Flat

(c) Peak

Fig. 2: An example of a sample in each of the three datasets.

same as the LIME method except shapley kernels utilized for weights
instead of exponential kernels.

Integrated Gradients interprets blackbox models by assigning im-
portance scores to input features. It constructs a path from a baseline
input to the actual input, computing gradients of the model’s output
with respect to the input features along this path, and integrating these
gradients to determine feature importance. The resulting importance
scores highlight the features that significantly influence the model’s
prediction for a specific instance. Finally, the Permutated Feature
Importance (PFI) randomly permutes the values of a single feature
while keeping the rest of the features unchanged, and then measures
the resulting decrease in the model’s performance. The larger the
decrease in performance, the more important the permuted feature is
considered to be.

2.4. AUROC Evaluation Method

Our AUROC method first determines the feature importance of en-
coded codebook tokens. The encoded indices are used as inputs to
the classifier model, and are encoded by the pre-trained VQ-VAE
model. The feature importance ranking of the encoded codebook
tokens represent the order in which the features will be unmasked to
determine the AUROC value. For example, if the feature importance
output from LIME using CNN is [5, 1, 4, 2...], then the 5th position of
the test sample quantized by VQ-VAE will be unmasked and the rest
of the positions will be masked. In the next step, feature positions 5
and 1 will be unmasked to determine the AUROC value. These steps
are taken iteratively until the last position of the quantized tokens
is unmasked, in which a plot is displayed with y-axis representing
AUROC values and the x-axis representing the number of unmasked
features used. We compare the area under these curves to determine
the interpretability difficulty of various datasets.
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Fig. 3: AUROC result; First row represents result of CNN classification task, Second row is result of Transformer classifier, and the Last row
represents the result of CNN+Transformer classifier. Each column is the result in hard-mitbih, flat, and peak dataset from left to right. Model
by line color are as follows. Blue;LIME, Orange;SHAP, Green;IG, Red;PFI

3. EXPERIMENTS

3.1. Experimental Settings

We conduct experiments on two classes of MIT-BIH dataset [13] and
generated Flat and Peak datasets. The MIT-BIH dataset is sampled in
360Hz, and contains two classes chosen for their classification diffi-
culty. The dataset represents hard interpretability difficulty, because
classification of the two classes is not relatively simple compared to
the two generated datasets. We use 400 samples of each class and
a total of 800 samples for training, validation, and testing. The Flat
dataset represents easy interpretability difficulty, with each of the two
classes denoting random points within the range 0− 0.4 and 0.6− 1
with respect to the y-axis, and each of the 16 timesteps have the same
values with respect to the x-axis. The characteristic of this dataset
is that all positions can be considered important features because
utilizing any one position should enable the model to distinguish
between the two classes. We also use 400 samples per class, and a
total of 800 samples. Finally, we generate the peak dataset from the
ECGtorso dataset [14]. We use two classes and two different regions
from the dataset where there is high variance, and zero-out all other
regions except those two regions. This dataset also represents easy
interpretability difficulty, but is different to Flat dataset in that only a
few features are considered important in classification. Similarly, 400

samples are generated for each class. Example of samples in each
dataset is shown in Figure 2.

3.2. Training Setup

We trained all models with a batch size of 64. The VQ-VAE and
classifier models were optimized using Adam [15] optimizer, and
learning rate of 2× 10−4. The MIT-BIH dataset samples contained
varying time lengths, therefore the samples were zero-padded to the
longest existing time length which was 192. Flat and peak datasets
were generated to be 192 in time length. After quantization with
receptive field of 16, there were 12 quantized tokens representing each
sample. we randomly split the datasets into train (80%), validation
(10%) and test (10%) sets. All experiments were conducted with 1
RTX 3090 GPU.

3.3. Quantitative Results

We first conduct VQ-VAE and classification training, and then use
four different XAI methods to calculate the AUROC scores. For the
VQ-VAE, time-series samples of each datasets are used to train a
model for each dataset, independently. Afterwards, the pre-trained
VQ-VAE is utilized to quantize the time-series samples to train classi-



fication models based on CNNs, transformers, and CNN + transform-
ers. The VQ-VAE architecture consists of four CNN layers in both
encoder and decoder, and the CNN classification model architecture
consists of three layers, transformers consists of three transformer
encoder layers, and CNN + transformer consists of three CNN layers
and one transformer encoder layer. The VQ-VAE loss with respect to
each dataset is shown in Table 2, and the classification accuracy with
respect to each dataset and model is shown in Table 3. As shown in
the tables, the VQ-VAE loss converges well for all datasets and the
classification accuracy show perfect scores for Flat and Peak datasets,
and slightly lower but almost perfect scores for MIT-BIH dataset.

After determining important positional features with LIME,
SHAP, IG, and PFI, we calculate the area under AUROCs with dif-
ferent number of features to determine the interpretability difficulty
of datasets. The area under AUROC scores are shown in Table
1. Overall, the values in Flat dataset is higher than both Peak and
MIT-BIH datasets because AUROC values reach near perfect score
regardless of number of features used. The values in Peak dataset
is similar but slightly lower than Flat dataset, and the values of
MIT-BIH is the lowest, denoting hardest interpretability difficulty.

3.4. Qualitative Analysis

As visualized in Figure 3, the area under AUROC plots are similar
for all three different classification models. For the Flat dataset, the
AUROC value is high from start to end because all features are im-
portant in the Flat dataset. For the Peak dataset, The AUROC score
drastically improves after unmasking more than 2 or 3 features, as
expected when a few positions in the dataset contain class discrimi-
native features such as peak points. An exception is the transformer
model, where all features are shown to be important. Finally, the
MIT-BIH dataset represents difficult interpretability, with the area
under AUROC scores less than both Flat and Peak datasets, and the
AUROC value reaching top scores after several features unmasked.

4. CONCLUSION

In this work, we propose a novel AUROC-based evaluation method
to determine the interpretability difficulty of time-series datasets.
The evaluation method successfully represent the difficulty level of
each of our three datasets in a consistent manner regardless of the
classifier model. For future work we will utilize the VQ-VAE decoder
to represent dataset discriminative time-series representations, and
improve upon our evaluation method.

5. REFERENCES

[1] Saira Aziz, Sajid Ahmed, and Mohamed-Slim Alouini, “Ecg-
based machine-learning algorithms for heartbeat classification,”
Scientific reports, vol. 11, no. 1, pp. 18738, 2021.

[2] Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron,
Nataraj Dasgupta, Sayee Natarajan, Larry A Pickett, and Varun
Dutt, “Ai in healthcare: time-series forecasting using statistical,
neural, and ensemble architectures,” Frontiers in big data, vol.
3, pp. 4, 2020.

[3] Warren Freeborough and Terence van Zyl, “Investigating ex-
plainability methods in recurrent neural network architectures
for financial time series data,” Applied Sciences, vol. 12, no. 3,
pp. 1427, 2022.

[4] Hyunseung Chung, Sang-Hoon Lee, and Seong-Whan Lee,
“Reinforce-aligner: Reinforcement alignment search for robust
end-to-end text-to-speech,” arXiv preprint arXiv:2106.02830,
2021.

[5] Sang-Hoon Lee, Ji-Hoon Kim, Hyunseung Chung, and Seong-
Whan Lee, “Voicemixer: Adversarial voice style mixup,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp.
294–308, 2021.

[6] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “"
why should i trust you?" explaining the predictions of any clas-
sifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp.
1135–1144.

[7] Scott M Lundberg and Su-In Lee, “A unified approach to
interpreting model predictions,” Advances in neural information
processing systems, vol. 30, 2017.

[8] Aaron Fisher, Cynthia Rudin, and Francesca Dominici, “All
models are wrong, but many are useful: Learning a variable’s
importance by studying an entire class of prediction models
simultaneously.,” J. Mach. Learn. Res., vol. 20, no. 177, pp.
1–81, 2019.

[9] Mukund Sundararajan, Ankur Taly, and Qiqi Yan, “Axiomatic
attribution for deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 3319–3328.

[10] Aaron Van Den Oord, Oriol Vinyals, et al., “Neural discrete
representation learning,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[11] Aurko Roy, Ashish Vaswani, Niki Parmar, and Arvind Nee-
lakantan, “Towards a better understanding of vector quantized
autoencoders,” 2018.

[12] Hanwei Wu and Markus Flierl, “Vector quantization-based
regularization for autoencoders,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2020, vol. 34, pp. 6380–
6387.

[13] George B Moody and Roger G Mark, “The impact of the mit-
bih arrhythmia database,” IEEE engineering in medicine and
biology magazine, vol. 20, no. 3, pp. 45–50, 2001.

[14] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large,
and Eamonn Keogh, “The great time series classification bake
off: a review and experimental evaluation of recent algorithmic
advances,” Data mining and knowledge discovery, vol. 31, pp.
606–660, 2017.

[15] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.


	 Introduction
	 Model Architecture
	 VQ-VAE
	 Classification Model
	 Model-agnostic XAI Methods
	 AUROC Evaluation Method

	 Experiments
	 Experimental Settings
	 Training Setup
	 Quantitative Results
	 Qualitative Analysis

	 Conclusion
	 References

