압축 심층신경망의 설명가능성 손상과 그 방지

Attribution Preservation in Network Compression for Reliable Network Interpretation(NeurIPS `20)

Machine Learning and Intelligence Lab @ KAIST 양은호 교수님 연구실 발표자: 양준용 (laoconeth@kaist.ac.kr)

*Equal contribution.

Safety-Critical Deep Learning

Safety-critical applications:

- Decisions and predictions may cause massive consequences
- Autonomous driving, autopilot, healthcare, etc.
- Need reliability(Constancy) and trust.

Autonomous Driving

Wearable Health Monitors

Safety-critical applications require:

- Reliability(Constancy): Must provide constant uptime.
 - Cloud based models are unreliable due to communication failures(+ latency, privacy issues).
 - Need to embed models directly on edge devices.
 - Network compression is needed to fit them inside smaller spaces
- Trust: Provide explanations to the decisions of the model to trust the model.
 - 'Why' did this self-driving car ran a red light?
 - Explainable AI(XAI) algorithms are needed

Autonomous Driving

Wearable Health Monitors

Safety-critical applications require:

- Reliability(Constancy): Must provide constant uptime.
 - Cloud based models are unreliable due to communication failures(+ privacy issues).
 - Need to embed models directly on edge devices.
 - Network compression is needed to fit them inside smaller spaces
- Trust: Provide explanations to the decisions of the model to trust the model.
 - 'Why' did this self-driving car ran a red light?
 - Explainable AI(XAI) algorithms are needed

Autonomous Driving (image courtesy Kim et al. ICCV 2017)

Wearable Health Monitors

Network Compression

Network Compression

- Modern neural networks require massive computing power
- Make the network consume less computational(time, space) cost while maintaining its prediction power
- Why: Embedding DNNs directly in edge devices(reliability)
- Knowledge distillation, Network pruning, Sparsification, Weight Quantization, etc.

Explainable AI

Explainable AI(XAI)

- DNNs are practically black boxes
- Produce human-understandable interpretations of decisions and predictions of neural networks
- Why: Trustworthiness, transparency
- Input attribution, interpretable models, etc.

Attribution Deformation Problem

Compression Breaks Attribution

- Compressed networks produce deformed attribution maps compared to their former selves and the ground truth segmentations.
- Happens across various compression methods and attribution methods

Raw Image

Full Network

KD

Structured Pruning Unstructured Pruning

KD with Ours

Compression Breaks Attribution

- The attributions of the compressed network are not only different from their past counterparts but also broken down compared to their respective segmentation ground truths.
- Happens across various compression methods and attribution methods
- Space restriction forces the network to abandon its standard decision procedures and resort to using human-indecipherable shortcuts and hints, which emerges in its deformed attribution maps.

	For samples with correct pr			
Method	#Param	AUC	Point Acc	
Full (Teacher)	15.22M	88.79	80.21	
Knowledge Distillation	0.29M	78.74	67.26	
Structured Pruning	3.27M	79.98	75.29	
Unstructured Pruning	0.53M	84.13	75.43	
KD (w/ Ours)	0.29M	88.06	79.12	

Table 1: Evaluation of how many samples were broken compared to the ground truth (segmentation labels) by various compression methods.

Attribution Matching to Preserve Attribution

- While compressing, make the attribution map of the compressing network follow the map of the pre-compression network
- Employ **a matching loss** to keep the maps of the compressing network close to the pre-compression network

$$L_{total} = L(W_s, x) + \beta \sum_{j \in I} \left\| \frac{M_s^{(j)}}{\|M_s^{(j)}\|_2} - \frac{M_t^{(j)}}{\|M_t^{(j)}\|_2} \right\|_2$$

Weight Collapsed Attribution Matching

• Generate attribution maps by collapsing them in the channel dimension

$$M^{(l)} = V\left(\sum_{c=1}^{C} U_{c}^{(l)} \cdot T(A_{c}^{(l)})\right)$$

Stochastic Matching

• We generate attribution maps by collapsing them in the channel dimension

$$M^{(l)} = V\left(\sum_{c=1}^{C} U_c^{(l)} \cdot T(A_c^{(l)})\right)$$

- When collapsing the channels, stochastically drop certain channels
- Increases generalization performance(similar to channel-wise dropout)

Stochastic sensitivity weighted

$$R_c \sim Bern(p)$$

$$U_c = R_c \cdot u_c$$

$$u_c = \phi(A_c, F_t, x)$$

Basic knowledge distillation

- Naïve Knowledge Distillation causes attribution map distortion
- Our framework effectively preserves the attribution map similarly to the pre-compression network, which in turn **preserves attribution against ground truth**.
- Attribution preservation also helps in preserving the **predictive performance**.

	č S	Predictio	n Performance	Attribu	ation Score				Simi	larity
Network	Method	mAP	F1 Score	AUC	Point Acc		Network	Method	Cos	ℓ_2
VGG16	Teacher	91.83	78.44	88.79	80.21		VGG16	Teacher	-	-
KD	KD	83.75	65.92	82.53	72.01		VGG16/2	KD	0.705	29.84
VGG16/2	EWA	86.48	68.19	85.05	80.42			EWA	0.788	21.21
SSW	SWA	86.56	67.78	88.12	80.66			SWA	0.873	12.98
	SSWA	86.42	67.94	88.89	81.13			SSWA	0.859	14.36
VGG16/4 SWA SSW	KD	81.31	62.50	80.61	68.86		VGG16/4	KD	0.650	35.52
	EWA	82.46	63.57	84.18	79.34			EWA	0.750	25.24
	SWA	83.67	65.14	87.90	80.05			SWA	0.841	16.23
	SSWA	84.47	66.13	88.10	80.26			SSWA	0.837	16.63
VGG16/8 SW SSV	KD	76.91	52.51	78.74	67.26		VGG16/8	KD	0.563	44.10
	EWA	79.56	58.91	81.99	78.49			EWA	0.652	34.90
	SWA	80.14	60.70	87.88	79.59			SWA	0.813	19.04
	SSWA	80.86	61.43	88.06	79.12			SSWA	0.842	19.49

Weight magnitude based unstructured pruning

- Since unstructured pruning is relatively tolerable, attribution distortion occurs less than other compression methods.
- Similar phenomena were observed: attribution score and predictive performance is preserved.

Table 4: Unstructured pruning models evaluated against ground truth (segmentation). Among the results of iterative pruning, the last remaining small-est network was evaluated.

	Predictio	on Performance	Attribution Score	
Method	mAP	F1 Score	AUC	Point Acc
Full(Teacher)	91.83	78.44	88.79	80.21
Naive	87.42	70.24	84.13	75.43
EWA	89.75	74.83	86.67	79.37
SWA	89.79	75.11	88.22	79.86
SSWA	89.96	75.51	88.45	79.25

Table 5: Unstructured pruning resultsfor attribution map deformation fromteacher to student network.

Method	Cos	ℓ_2
Full(Teacher)	-	-
Naive	0.790	21.21
EWA	0.895	10.71
SWA	0.913	8.407
SSWA	0.920	7.826

L1-magnitude based structured pruning

- Similar phenomena were seen in the structured pruning method. As the structured pruning prune with the unit of channels, attribution distortion occurs more than unstructured pruning.
- Our framework also help preserving the attribution maps with structured pruning.

Table 6: ℓ_1 -structured pruning models evaluated against ground truth (segmentation).

	Predictio	on Performance	Attribution Score	
Method	mAP	F1 Score	AUC	Point Acc
Full(Teacher)	91.83	78.44	88.79	80.21
Naive	83.76	60.71	79.98	75.29
EWA	87.62	66.05	83.96	78.84
SWA	88.39	67.70	86.99	81.65
SSWA	89.07	68.28	88.34	81.08

Table 7: ℓ_1 -structured pruning results for attribution map deformation from teacher to student network.

Method	Cos	ℓ_2
Full(Teacher)	-	-
Naive	0.764	30.04
EWA	0.855	14.74
SWA	0.911	9.102
SSWA	0.910	9.232

Sample Images(Structured Pruning)

Raw Image

Full Network

Naïve Fine-tune

SSWA (Ours)

Effects on Other Attribution Methods

- We observe that the maps of the three attribution methods are indeed deformed when compression is performed, and exhibit inferior point accuracy and ROC-AUC performance compared to the network before compression.
- Even though our framework (SSWA) utilized gradient based attribution maps akin to Grad-Cam, employing this regularizer helps to preserve other attribution methods.

Table 8: Attribution deformation and preservation results on other attribution methods. For this experiment, we use the knowledge distillation with VGG/8. We report the AUC and Point accuracy to evaluate the localization ability of the attribution maps.

AUC/Point Acc	Grad Cam	Excitation Bp	$LRP_{\alpha=1,\beta=0}$	RAP
Full (Teacher)	88.79/80.21	84.14/74.80	85.29/65.48	84.54/69.49
Naive	78.74/67.26	76.31/66.31	79.60/53.43	80.85/56.87
SSWA (Ours)	88.06/79.12	82.31/71.24	82.46/64.08	83.53/65.66

Conclusion

- Discovered that naïve network compression causes the **Attribution Deformation Problem,** which has not been considered before.
- Proposed and constructed the Attribution Map Matching framework, which enforces the attribution maps of the compressed network to follow the pre-compression network.
- Experiments show that our method indeed **preserves various kinds of attribution**. Also, our method yields gains in terms of **predictive performance**.

Future works

Preservation for black box models and attribution algorithms

- Recent works propose black box attribution via input occlusion/perturbation
- However, our work requires intermediate representations and gradients
- Preserve attributions without using intermediate representations

Getting rid of the teacher network while training

- Our method uses more computation in the training phase due to the teacher(full network)
- Preserve attributions without a teacher network

End of Presentation

Machine Learning and Intelligence Lab @ KAIST

Presenter: Juneyong Yang laoconeth@kaist.ac.kr

