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Safety-Critical Deep Learning

Safety-critical applications:

• Decisions and predictions may cause massive consequences

• Autonomous driving, autopilot, healthcare, etc. 

• Need reliability(Constancy) and trust.
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Safety-Critical Deep Learning

Safety-critical applications require:

• Reliability(Constancy): Must provide constant uptime.

• Cloud based models are unreliable due to communication failures(+ latency, privacy issues).

• Need to embed models directly on edge devices.

• Network compression is needed to fit them inside smaller spaces

• Trust: Provide explanations to the decisions of the model to trust the model.

• ‘Why’ did this self-driving car ran a red light?

• Explainable AI(XAI) algorithms are needed
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Safety-Critical Deep Learning

Safety-critical applications require:

• Reliability(Constancy): Must provide constant uptime.

• Cloud based models are unreliable due to communication failures(+ privacy issues).

• Need to embed models directly on edge devices.

• Network compression is needed to fit them inside smaller spaces

• Trust: Provide explanations to the decisions of the model to trust the model.

• ‘Why’ did this self-driving car ran a red light?

• Explainable AI(XAI) algorithms are needed
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🤖:95% possibility of cardiac 
arrest within in 3 hrs

But why?!? : 👨

Autonomous Driving
(image courtesy Kim et al. ICCV 2017)



Network Compression

Network Compression

• Modern neural networks require massive computing power

• Make the network consume less computational(time, space) cost while maintaining 

its prediction power

• Why: Embedding DNNs directly in edge devices(reliability)

• Knowledge distillation, Network pruning, Sparsification, Weight Quantization, etc.
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Explainable AI

Explainable AI(XAI)

• DNNs are practically black boxes

• Produce human-understandable interpretations of decisions and predictions of 

neural networks

• Why: Trustworthiness, transparency

• Input attribution, interpretable models, etc.

61) Yulong Wang., Pytorch Visual Attribution 2018, github.com/yulongwang12/visual-attribution



Attribution Deformation Problem

Compression Breaks Attribution

• Compressed networks produce deformed attribution maps compared to their former 

selves and the ground truth segmentations.

• Happens across various compression methods and attribution methods
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Attribution Deformation Problem

Compression Breaks Attribution

• The attributions of the compressed network are not only different from their past 

counterparts but also broken down compared to their respective segmentation 

ground truths.

• Happens across various compression methods and attribution methods

• Space restriction forces the network to abandon its standard decision procedures and 

resort to using human-indecipherable shortcuts and hints, which emerges in its 

deformed attribution maps.
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Table 1: Evaluation of how many samples were broken compared to the 

ground truth (segmentation labels) by various compression methods.



Attribution Matching to Preserve Attribution

• While compressing, make the attribution map of the compressing network follow the 

map of the pre-compression network

• Employ a matching loss to keep the maps of the compressing network close to the 

pre-compression network
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Weight Collapsed Attribution Matching

• Generate attribution maps by collapsing them in the channel dimension 
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Stochastic Matching

• We generate attribution maps by collapsing them in the channel dimension 

• When collapsing the channels, stochastically drop certain channels

• Increases generalization performance(similar to channel-wise dropout)
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Knowledge Distillation

Basic knowledge distillation

• Naïve Knowledge Distillation causes attribution map distortion

• Our framework effectively preserves the attribution map similarly to the 

pre-compression network, which in turn preserves attribution against ground truth.

• Attribution preservation also helps in preserving the predictive performance.
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Unstructured Pruning

Weight magnitude based unstructured pruning

• Since unstructured pruning is relatively tolerable, attribution distortion occurs less 

than other compression methods.

• Similar phenomena were observed: attribution score and predictive performance is 

preserved.
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Structured Pruning

L1-magnitude based structured pruning

• Similar phenomena were seen in the structured pruning method. As the structured 

pruning prune with the unit of channels, attribution distortion occurs more than 

unstructured pruning.

• Our framework also help preserving the attribution maps with structured pruning.
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Sample Images(Structured Pruning)
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Other Attribution maps
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Effects on Other Attribution Methods

• We observe that the maps of the three attribution methods are indeed deformed 

when compression is performed, and exhibit inferior point accuracy and ROC-AUC 

performance compared to the network before compression.

• Even though our framework (SSWA) utilized gradient based attribution maps akin to 

Grad-Cam, employing this regularizer helps to preserve other attribution methods.



Conclusion

• Discovered that naïve network compression causes the Attribution Deformation 

Problem, which has not been considered before.

• Proposed and constructed the Attribution Map Matching framework, which enforces 

the attribution maps of the compressed network to follow the pre-compression 

network.

• Experiments show that our method indeed preserves various kinds of attribution. 

Also, our method yields gains in terms of predictive performance.
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Future works

Preservation for black box models and attribution algorithms

• Recent works propose black box attribution via input occlusion/perturbation

• However, our work requires intermediate representations and gradients

• Preserve attributions without using intermediate representations

Getting rid of the teacher network while training

• Our method uses more computation in the training phase due to the teacher(full 

network)

• Preserve attributions without a teacher network

18



End of Presentation

Machine Learning and Intelligence Lab @ KAIST

Presenter: Juneyong Yang

laoconeth@kaist.ac.kr


