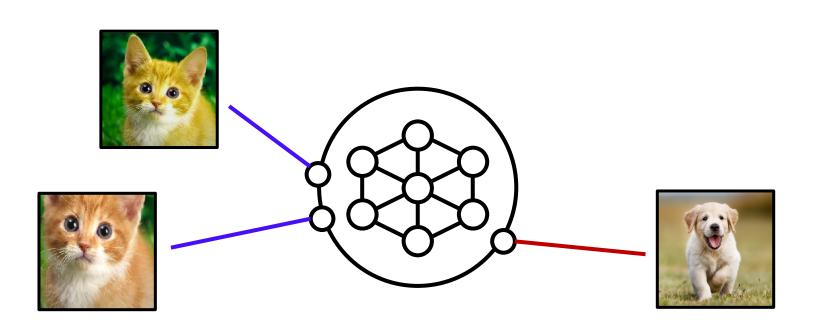
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances (NeurIPS 2020)

Jihoon Tack*, Sangwoo Mo*, Jongheon Jeong, Jinwoo Shin Korea Advanced Institute of Science and Technology (KAIST)

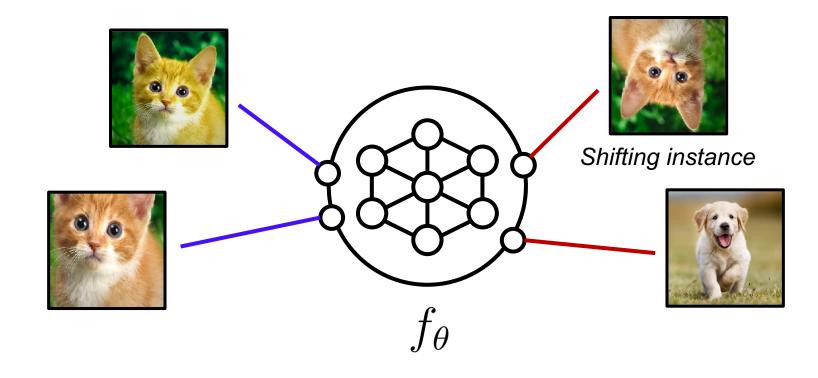

* Equal contribution

What is contrastive learning?

- Learn the representation that encodes the similarity between data points
- (+) Does not require labels for learning representations
- (+) SOTA performance on visual representation learning
- (-) Less understanding on the characteristic of the learned representation

What is contrastive learning?

- Learn the representation that encodes the similarity between data points
- We use simple contrastive learning (SimCLR) [1]:
 - pull the same samples of *different augmentations*
 - **push** the <u>different samples</u>



: pull

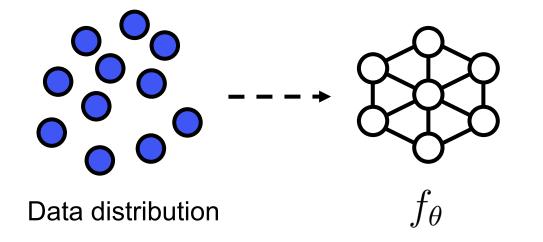
📕 : push

Summary: Contrasting Shifted Instances

- Learn the representation: contrastive learning with shifted instances
 - Investigation on the transformation for the contrastive learning
- Define score function: utilize 1) contrastive learning 2) shifting transformation

Problem: Novelty/Out-of-distribution Detection

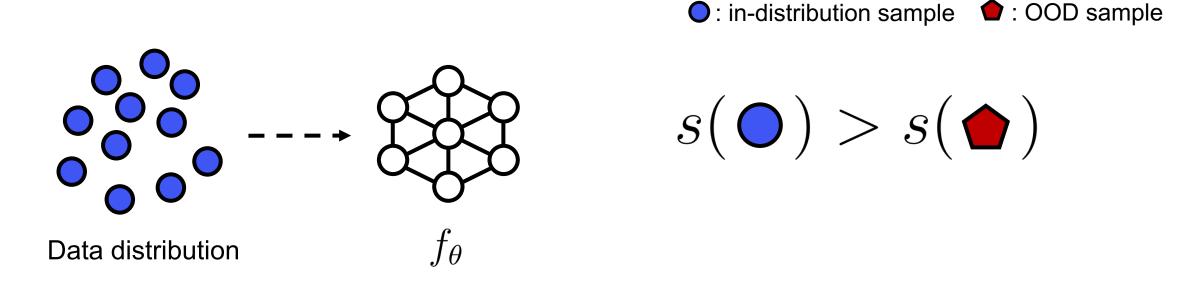
• Identifying whether a given sample belongs to the data distribution



Data distribution

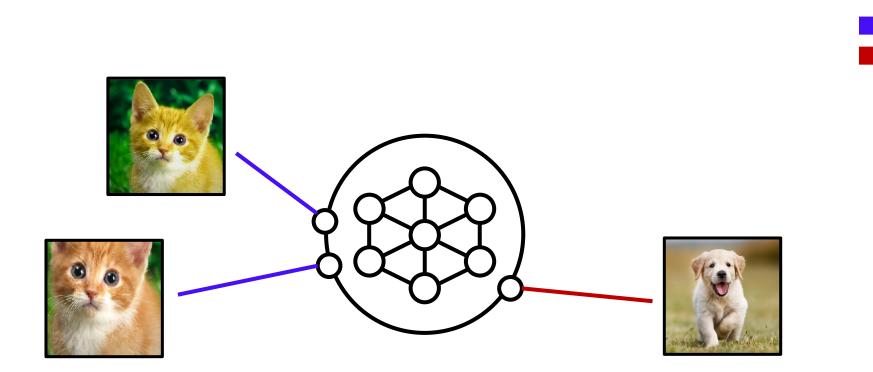
Out-of-distribution samples

Problem: Novelty/Out-of-distribution Detection


• Identifying whether a given sample belongs to the data distribution

• Learn a representation f_{θ} from the data distribution

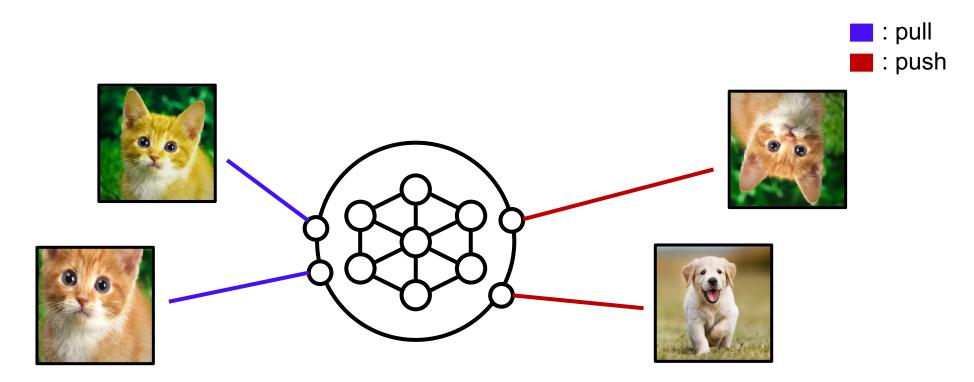
Problem: Novelty/Out-of-distribution Detection

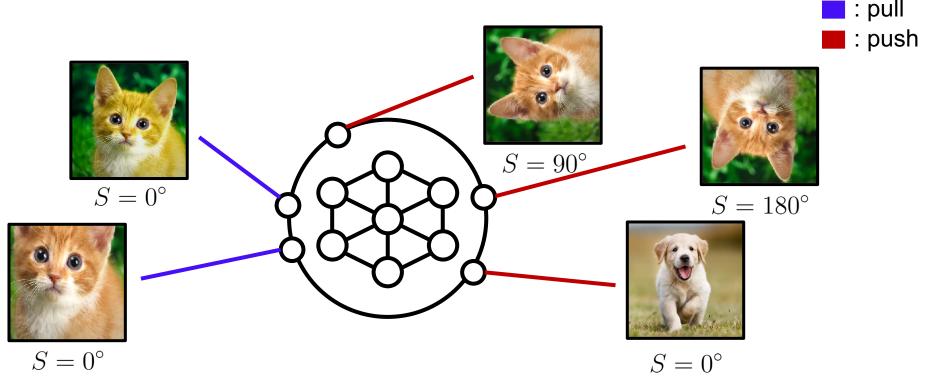

Identifying whether a given sample belongs to the data distribution

- Learn a representation f_{θ} from the data distribution
- **Define a detection score** s(.) utilizing the representation f_{θ}

• We train the representation via contrastive learning with shifted instances:

- We train the representation via contrastive learning with shifted instances:
 - We found **contrastively learned representation** [1] is already effective at OOD detection




: pull

: push

- We train the representation via contrastive learning with shifted instances:
 - We found **contrastively learned representation** [1] is already effective at OOD detection
 - CSI further improves by **pushing the shifted samples** in addition to the different samples

- We train the representation via **contrastive learning with shifted instances**:
 - We found **contrastively learned representation** [1] is already effective at OOD detection
 - CSI further improves by pushing the shifted samples in addition to the different samples
 - Additionally classify the shifting transformation

[1] Chen et al. A simple framework for contrastive learning of visual representations. ICML 2020.

Contrasting Shifted Instances (CSI): Detection Score

• Detection score for **contrastively learned representation**:

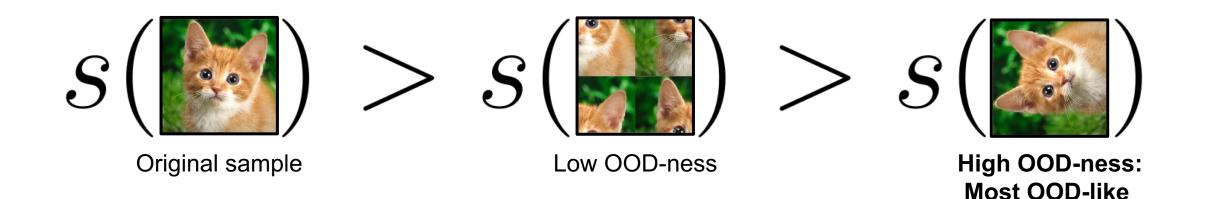
• Further improving the detection score by **utilizing the shifting transformation**:

Contrasting Shifted Instances (CSI): Detection Score

- Detection score for contrastively learned representation:
 - The *cosine similarity* to the nearest training sample
 - The *norm* of the representation

• Further improving the detection score by utilizing the shifting transformation:

Contrasting Shifted Instances (CSI): Detection Score


- Detection score for contrastively learned representation:
 - The *cosine similarity* to the nearest training sample
 - The *norm* of the representation

- Further improving the detection score by **utilizing the shifting transformation**:
 - $s_{\text{con-SI}}(x, \{x_m\})$: ensemble the score $s_{\text{con}}(x; \{x_m\})$ over all shifting transformation
 - $s_{cls-SI}(x)$: confidence of the shifting transformation classifier

$$s_{\text{CSI}}(x; \{x_m\}) := s_{\text{con-SI}}(x; \{x_m\}) + s_{\text{cls-SI}}(x)$$

Contrasting Shifted Instances (CSI): OOD-ness

- **OOD-ness**: How to choose the shifting transformation?
 - The transformation that generates the most **OOD-like yet semantically meaningful samples**
 - We choose the transformation with the high OOD-ness (AUROC on vanilla SimCLR)

transformation

Contrasting Shifted Instances (CSI): Extension

- We also extend CSI for training <u>confidence-calibrated classifier</u> [2]:
 - Accurate on predicting label y when input x is in-distribution
 - Confidence $s_{sup}(x) \coloneqq \max_{y} p(y|x)$ of the classifier is well-calibrated

•: in-distribution *correct* sample •: in-distribution *in-correct* sample

 $s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc)$

 $s_{\sup}(\bigcirc) > s_{\sup}(\bigodot)$

Contrasting Shifted Instances (CSI): Extension

- We also **extend CSI** for training <u>confidence-calibrated classifier</u> [2]:
 - Accurate on predicting label *y* when input *x* is in-distribution
 - Confidence $s_{sup}(x) \coloneqq \max_{y} p(y|x)$ of the classifier is well-calibrated

•: in-distribution *correct* sample •: in-distribution *in-correct* sample

$$s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc) \qquad s_{\sup}(\bigcirc) > s_{\sup}(\bigodot)$$

- We adapt the idea of CSI to the supervised contrastive learning (SupCLR) [3]:
 - SupCLR contrasts samples in class-wise, instead of in instance-wise
 - Similar to CSI, sup-CSI consider shifted instance as a different class's sample

Experiments: unlabeled one-class OOD

CSI (ours)

ResNet-18

89.6

- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For unlabeled one-class OOD detection, outperforms prior methods in every classes

Method	Network	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Mean
OC-SVM* [64]	-	65.6	40.9	65.3	50.1	75.2	51.2	71.8	51.2	67.9	48.5	58.8
DeepSVDD* [60]	LeNet	61.7	65.9	50.8	59.1	60.9	65.7	67.7	67.3	75.9	73.1	64.8
AnoGAN* [63]	DCGAN	67.1	54.7	52.9	54.5	65.1	60.3	58.5	62.5	75.8	66.5	61.8
OCGAN* [55]	OCGAN	75.7	53.1	64.0	62.0	72.3	62.0	72.3	57.5	82.0	55.4	65.7
Geom* [17]	WRN-16-8	74.7	95.7	78.1	72.4	87.8	87.8	83.4	95.5	93.3	91.3	86.0
Rot* [27]	WRN-16-4	71.9	94.5	78.4	70.0	77.2	86.6	81.6	93.7	90.7	88.8	83.3
Rot+Trans* [27]	WRN-16-4	77.5	96.9	87.3	80.9	92.7	90.2	90.9	96.5	95.2	93.3	90.1
GOAD* [2]	WRN-10-4	77.2	96.7	83.3	77.7	87.8	87.8	90.0	96.1	93.8	92.0	88.2
Rot [27]	ResNet-18	78.3 ± 0.2	$94.3{\scriptstyle \pm 0.3}$	86.2 ± 0.4	$80.8 {\pm} 0.6$	$89.4{\scriptstyle\pm0.5}$	89.0 ± 0.4	$88.9{\pm}0.4$	95.1 ± 0.2	$92.3{\scriptstyle \pm 0.3}$	$89.7{\scriptstyle\pm0.3}$	88.4
Rot+Trans [27]	ResNet-18	80.4 ± 0.3	$96.4{\scriptstyle \pm 0.2}$	$85.9{\scriptstyle \pm 0.3}$	81.1 ± 0.5	$91.3{\scriptstyle \pm 0.3}$	89.6 ± 0.3	$89.9{\scriptstyle \pm 0.3}$	$95.9{\scriptstyle \pm 0.1}$	$95.0{\scriptstyle \pm 0.1}$	$92.6{\scriptstyle \pm 0.2}$	89.8
GOAD [2]	ResNet-18	75.5 ± 0.3	$94.1{\scriptstyle\pm0.3}$	81.8 ± 0.5	72.0 ± 0.3	$83.7{\pm}0.9$	84.4 ± 0.3	$82.9{\scriptstyle\pm0.8}$	$93.9{\scriptstyle \pm 0.3}$	$92.9{\scriptstyle \pm 0.3}$	$89.5{\scriptstyle\pm0.2}$	85.1
CSI (ours)	ResNet-18	89.9 ±0.1	99.1 ±0.0	93.1±0.2	86.4±0.2	93.9 ±0.1	93.2±0.2	95.1±0.1	98.7±0.0	97.9 ±0.0	95.5 ±0.1	94.3
(b) One-class CIFAR-100 (super-class)							(c) One	-class I	nageNe	et-30		
Method	Netv	vork	AUR	DC	Metho	d			Net	work	AUR	OC
OC-SVM* [64] -			63.1	L – –	Rot* [27]				ResNet-18		65.	3
Geom* [17] WRN-16		N-16-8	78.7	7	Rot+Trans [*] [27]			Res	Net-18	77.	9	
Rot [27] ResNet-18		Net-18	77.7		Rot+Attn [*] [27]				Net-18	81.	6	
		Net-18	79.8	3	Rot+Trans+Attn [*] [27]				Res	Net-18	84.	8
GOAD [2] ResNet		Net-18	74.5	5	Rot+Trans+Attn+Resize* [27]					Net-18	85.	7
L J				-	~~~			_		0.4	-	

CSI (ours)

ResNet-18

91.6

(a) One-class CIFAR-10

Experiments: unlabeled multi-class OOD

- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For unlabeled multi-class OOD detection, outperforms prior methods in every OOD datasets

				$CIFAR10 \rightarrow$							
Method		Netw	ork	SVHN	LSUN	ImageNet	LSUN	(FIX)	ImageNet (FIX)	CIFAR-100	Interp.
Likelihood* Pixe		Pixel	CNN++	8.3	-	64.2	-		-	52.6	52.6
Likelihood*		Glow		8.3	-	66.3	-		-	58.2	58.2
Likelihood*		EBM		63.0	-	-	-		-	-	70.0
Likelihood Ratio	* [55]	Pixel	CNN++	91.2	-	-	-		-	-	-
Input Complexity	y* [<mark>61</mark>]	Pixel	CNN++	92.9	-	58.9	-		-	53.5	-
Input Complexity	Input Complexity* [61] Glov			95.0	- 71.6		-	73.6			
Rot [25]		ResN	et-18	97.6 ± 0.2	89.2 ± 0.7	90.5 ± 0.3	$77.7\pm$	0.3	83.2±0.1	$79.0{\scriptstyle\pm0.1}$	64.0 ± 0.3
Rot+Trans [25]			et-18	$97.8{\scriptstyle\pm0.2}$	$92.8{\scriptstyle\pm0.9}$	$94.2{\pm}0.7$	$81.6\pm$	0.4	86.7 ± 0.1	$82.3{\scriptstyle\pm0.2}$	$68.1{\scriptstyle\pm0.8}$
GOAD [2]		ResN	et-18	$96.3{\scriptstyle \pm 0.2}$	$89.3{\scriptstyle\pm1.5}$	$91.8{\scriptstyle\pm1.2}$	$78.8\pm$	0.3	83.3 ± 0.1	77.2 ± 0.3	$59.4{\scriptstyle\pm1.1}$
CSI (ours)	CSI (ours) ResNe		et-18	$99.8{\scriptstyle\pm0.0}$	$97.5{\scriptstyle\pm0.3}$	$97.6{\scriptstyle\pm0.3}$	90.3 ±	0.3	93.3 ±0.1	$89.2{\scriptstyle\pm0.1}$	$\textbf{79.3}{\scriptstyle \pm 0.2}$
(b) Unlabeled ImageNet-30											
	ImageNet-30 \rightarrow										
Method	Netwo	ork	CUB-20	00 Dog	gs Pe	ets Flow	vers F	food-101	1 Places-365	Caltech-256	DTD
Rot [25]	ResNo	et-18	76.5 ± 0	.7 77.2	E0.5 70.0	±0.5 87.2	±0.2	72.7±1.5	52.6±1.4	$70.9{\scriptstyle\pm0.1}$	$89.9{\scriptstyle\pm0.5}$
Rot+Trans [25]	ResNo	et-18	74.5 ± 0	.5 77.8	1.1 70.0	±0.8 86.3	± 0.3	71.6±1.4	53.1±1.7	70.0 ± 0.2	$89.4{\scriptstyle \pm 0.6}$
GOAD [2]	ResNo	et-18	71.5 ± 1	.4 74.3	1.6 65.5	±1.3 82.8	±1.4 (58.7 ± 0.7	51.0 ± 1.1	$67.4{\scriptstyle\pm0.8}$	$87.5{\scriptstyle\pm0.8}$

94.7±0.4

89.2±0.3

78.3±0.3

97.1±0.1 **85.2**±0.2

CSI (ours)

ResNet-18

90.5±0.1

(a) Unlabeled CIFAR-10

87.1±0.1

96.9±0.1

Experiments: labeled multi-class OOD

- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For labeled multi-class OOD detection, outperforms prior methods in every OOD datasets

				$CIFAR10 \rightarrow$								
Train method	Test acc.	ECE	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR100	Interp.			
Cross Entropy	$93.0{\pm}0.2$	$6.44{\pm}0.2$	88.6 ± 0.9	$90.7{\pm}0.5$	$88.3{\pm}0.6$	87.5 ± 0.3	87.4 ± 0.3	85.8 ± 0.3	$75.4{\pm}0.7$			
SupCLR [30]	$93.8{\scriptstyle\pm0.1}$	5.56 ± 0.1	$97.3{\scriptstyle \pm 0.1}$	$92.8{\scriptstyle\pm0.5}$	91.4 ± 1.2	91.6 ± 1.5	$90.5{\scriptstyle\pm0.5}$	88.6 ± 0.2	$75.7{\scriptstyle\pm0.1}$			
CSI (ours)	$94.8{\scriptstyle\pm0.1}$	4.40 ± 0.1	$96.5{\scriptstyle\pm0.2}$	$96.3{\scriptstyle \pm 0.5}$	96.2 ± 0.4	$92.1 {\pm} 0.5$	92.4 ± 0.0	$90.5{\scriptstyle\pm0.1}$	$78.5{\scriptstyle\pm0.2}$			
CSI-ens (ours)	$96.1{\scriptstyle \pm 0.1}$	$\textbf{3.50}{\scriptstyle \pm 0.1}$	$97.9{\scriptstyle \pm 0.1}$	$97.7{\scriptstyle\pm0.4}$	97.6 ±0.3	93.5 ± 0.4	94.0 ± 0.1	92.2 ± 0.1	$80.1{\pm}0.3$			

(a) Labeled CIFAR-10

(b) Labeled ImageNet-30

			ImageNet-30 \rightarrow								
Train method	Test acc.	ECE	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD	
Cross Entropy	94.3	5.08	88.0	96.7	95.0	89.7	79.8	90.5	90.6	90.1	
SupCLR [30]	96.9	3.12	86.3	95.6	94.2	92.2	81.2	89.7	90.2	92.1	
CSI (ours)	97.0	2.61	93.4	97.7	96.9	96.0	87.0	92.5	91.9	93.7	
CSI-ens (ours)	97.8	2.19	94.6	98.3	97.4	96.2	88.9	94.0	93.2	97.4	

Experiments: ablation study

- We verified the effectiveness of **shifting transformation selection scheme**
 - Higher OOD-ness valued transformation leads to higher detection performance

					6				
(a) Original	(b) Cuto	out ((c) Sobel	(d) N	loise	(e) Blu	ır (f) Perm	(g) Rotate
		(Cutout	Sobel	Noise	Blur	Perm	Rotate	
	OOD-	ness	79.5	69.2	74.4	76.0	83.8	85.2	
					l Highe	er OOD	-ness →	Higher	performance
	Base		Cutout	t Sobel	Noise	Blur	Perm	Rotate	_
	87.9	+Align +Shift	84.3 88.5	85.0 88.3	85.5 89.3	88.0 89.2	73.1 90.7	76.5 94.3	

Conclusion

- We propose Contrasting Shifted Instances (CSI) for OOD detection
 - We extend the power of contrastive learning for OOD detection
 - We further improve the OOD detection by utilizing shifting transformations

CSI shows outstanding performance under various OOD detection scenarios

 We believe CSI would guide various future directions in OOD detection & selfsupervised learning as an important baseline.

Thank you for your attention ©

Paper: <u>arxiv.org/abs/2007.08176</u> Code: <u>https://github.com/alinlab/CSI</u>