설명가능 인공지능 금융분야 응용

2020년 XAI 온라인 워크숍 (2020/11/20) 서병기, UNIST 경영과학부, bkseo@units.ac.kr

금융분야 인공지능 응용 개요

- 금융분야에서 Quantitative 한 방법론을 적용하던 분석에는 전방위로 인공지능방법을 적용 시 도하고 있음
- 과거 시계열 데이터를 분석하여, 시장의 미래 움직임을 예측하는 것이 주를 이루고 있음
- 금융분야는 비교적 잘 정형화 되어 있는 대량의 데이터가 있고, 금융 시장 가격의 Factor 들을 잘 분해하는 좋은 모델들이 많아서 새로운 방법론을 적용해보는 시도들을 해보기가 상대적으로 용이함
- 그래서 더욱 시장 움직임을 분석/예측한 결과의 이유와 그 인과관계를 설명하는 것이 금융시장 분석의 가장 중요한 요소임

금융분야 인공지능 연구 소개

- 차주(Borrower)의 특성을 Grouping 하여 신용점수를 부여하는 연구
 - 신용점수(부도율)에 영향을 미치는 변수 중 설명력이 높은 변수를 찾아 고객이 본인의 신용점수를 관리할 수 있도록 함
- 자연어처리 응용으로 뉴스 기사 및 애널리스트 리포트를 수집하여 시장의 움직임을 예측
 - 기존의 Bag-of-words를 만들어 Sentiment를 분석하던 방법 외, 문장 전체의 Sentiment를 분석하는 방법을 고려
 - 시장 움직임에 실제로 영향을 주는 요소들을 단어별로 검토
- 리스크관리에 주로 쓰이는 VaR의 확장
 - GAN을 활용하여 현재 포트폴리오에서 실제로 일어날 수 있는 시장의 움직임을 Generate 하여 VaR에 적용
- 금융시장 붕괴 예측
 - 금융시장이 붕괴하는 시그널을 찾고, 그 원인을 가장 잘 설명하는 요소 포착

Machine Learning Approach to Predict Oil Price Returns

Model Explanation

Reference

Ke, Z. T., Kelly, B. T., & Xiu, D. (2019). Predicting returns with text data (No. w26186). National Bureau of Economic Research.

Classification Result

Portfolio Return

PortVRet, PortPRet, PortSRet indicate portfolio strategy using other popular textual analysis methods such as Vader and TextBlob

- Under the efficient market hyphothesis,
 - stock markets are priced as the information.
 - The time series data of market should follow random walk distribution,
 - hence the market crash could occur only if new and significantly huge information related to price shock is generated (extremely rare!)
- However, in the real market,
 - financial crashes are more frequent and stock price distribution follows fat-tailed power-law.
 - Old information affects the stock price.
 - Herding behavior, which occurs when traders are inter-connected each other, is observed.

- Trying to understand the financial market as complex systems and crash as critical phenomenon
- Why market crash can be identified at early stage?
 - Nature resists to changes. When it fails, an explosive change happens
 - In the vicinity of critical point, strong long-range correlations and self-similarity are observed.
 - The nature of the bubble growth and crash seems to have the same origin.
 - The long-range correlation and self-similarity are able to be identified in early stage.
- However, we don't know the key parameters (order parameters) controlling the market crash.

4 input sets

- Log return of price
- Correlation discontinuity measure of price x volume
- Buy-sell ratio of price x volume
- Correlation of buy-sell ratio of price x volume

- We use 60 x 35 x 4 input data
 - $(t: t + 59) \times (s_1: s_{35}) \times (Input_1: Input_4)$
 - $s = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 100, 150, \dots, 10000]$
 - Training data is constructed by combining drawdown data, drawup data, normal data at a ratio of 1:1:1 to prevent learning from proceeding with the drawdown ignored.
- Explainability

APPL

SPY

감사합니다.