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Gastroenterology: colorectal cancer research

 TOPIC: “Real-time differentiation of hyperplastic colorectal polyps

and traditional serrated adenoma during standard colonoscopy using
Transfer Learning based Deep Neural Network”

e Gastroenterology. 2020 May 1;158(6):5-17 (lecture presentation DDW 2020)

e Submitted to The American journal of gastroenterology 2020 (under review)



Associated publication list

« Kim, S., Kwon, S., Markey, M.K., Bovik, A.C., Kim, K.J., Park, S.J., Kim, T.l., Cheon, J.H. & Park, Y.. The
Long-term Risks Of Low-risk Adenoma, High-risk Adenoma, And Colorectal Cancer Following Adenoma
Removal. Gastroenterology. 2020, May; 158(6): S-1173. Pub Status: Published.

« Kim, S., Kwon, S., Markey, M.K., Bovik, A.C., Kim, K.J., Kim, T.l., Cheon, J.H., Park, S.J. & Park, Y..
Towards Computer-aided diagnosis (CAD) for colonoscopy: Real-time differentiation of diminutive
hyperplastic colorectal polyps and diminutive traditional serrated adenomas using a transfer learning based
deep neural network. Gastroenterology. 2020, May; 158(6): S-17. Pub Status: Published.
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background

Study design

No malignancy potency
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Conclusion

TSA

- distal colon/rectum %
- ectopic crypts
- dysplastic

Serrated
Adenocarcinoma

malignancy potency!!!

Conventional
adenoma

Adenocarcinoma

Ambiguity!

Serrated Polyposis Is an Underdiagnosed and Unclear Syndrome: The Surgical Pathologist has a Role in Improving Detection. Crowder CD, Sweet K, Lehman A, Frankel WL. Am J Surg Pathd.

2012 Aug;36(8):1178-85. PMID: 22790859




background

Study design

result

Conclusion

Abbreviation: deep neural network, DNN;

Real-time deep neural network differentiating of TSAsand HPs

within 50 milli-seconds

DNN

hyperplastic polyp, HP; traditional serrated adenoma, TSA.

Probability
* TSA 99.9%
*HP 0.1%

The American Journal of
GASTROENTEROLOGY




background

Study design

result Conclusion

Polyp detected in colonoscopy

More money and time

|

Looks li

ke benign?

A

Leave
(or resect

lesion
& discard)

A

y

No furth

er analysis

Rex, Douglas K., et al. "The American Society for Gastrointestinal Endoscopy PIVI (Preservation
and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the
histology of diminutive colorectal polyps.” Gastrointestinal endoscopy 73.3 (2011): 419-422.

|

Looks like malignant?

Over 1 week l

1)
2)
3)
4)
5)
6)
7)

Remove lesion

Put the lesion in container

Order pathologic report

Formalin fixation

Cut the lesion into multiple pieces
Pathologic decision

Return reports to physician

Over 2 week l

Patients revisit to clinic for
further management




background Study design

result Conclusion

Polyp detected in endoscopy

| S

Looks like benign?

> |

Looks like malignant?

\
Then, who & how to decide “benign-like” vs “malignant-like”?

4

Clinical judgement can be used deciding whether the histology of a given o=

polyp can be assessed accurately using an endoscopic technology

|7}

A
r\l
[e]
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ﬁ Rex, Douglas K., 73.3 (2011): 419-422.

It means that physician will decide it by his own clinical knowledge.

—> the variability of performance is well-known problem .



background

Study design

result

Severance Hospital Polyp dataset
(confirmed by pathology after a resection)

Conclusion

tuning last layers with
) transfer learning

- Classification between

A network for

HP vs. TSA
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background

Study design

result

Hyperplastic Traditional
polyp serrated polyp

No. of participants (lesions) 92 84
No. of colonoscopy images 111 116
Age, year 53 (43-62) 58 (49-66)
Female, % 20 (50%) 6 (66%)
Size, mm 4.7(2.3-6.4) 7.2(3.3-12.4)
Location

proximal 12 (26%) 3 (30%)

distal 38 (74%) 7 (70%)
Body mass index, kg/m2 23 (23-23) 23 (23-23)
Year of endoscopy, %

Before 2011 12 (26%) 3 (30%)

2011-2015 38 (74%) 7 (70%)

After 2005 12 (26%) 3 (30%)
Reason for first endoscopy, %

Routine screening 8 (6%) 3 (3%)

Symptom 6 (4%) 7 (7%)

Disease 12 (16%) 15 (15%)

Evaluation 3 (3%) 3 (3%)

others 63 (67%) 52 (61%)
Bowel preparation

clean 72 (70%) 67 (64%)

dirty 16 (17%) 7 (10%)

unknown 21 (26%) 10 (30%)

29| H|0|E =

Conclusion

Final

9
‘;; 60 Accuracy
g Training (smoothed)
8 40 Training
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- =@ = - Validation
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0
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Abbreviation: Deep Neural Network, DNN.
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background

Probability of HP: 99
Probability of TSA: O.
Ground truth: HP

result

Study design
2% Probability of HP: 0.1%
8% Probability of TSA: 99.9%

- Ground truth: TSA

Sensitivity

Conclusion

AUC: 0.86 (n=55)

0.5 1
1-specificity
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background Study design result Conclusion

Prob: 2.%/ Truth: 0 Prob: 47.2%/ Truth: 1 Prob: 99.1%/ Truth: 1

Estimated probability

for TSA (test set) 100%

No decision

S N

«

0%

(the user selects the width of the
gray zone based on the training set)
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background Study design

No gray zone

assigned
AUC: 0.86 (n=55)
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1-specificity

result

Conclusion
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background Study design result Conclusion

e Our machine may provide clinical utility to classify

* hyperplastic polyp from traditional serrated adenoma
* Achieving high accuracy

* Using real-time decision with standard colonoscopy.

* This approach has been applied to a variety of research.

* Includes Pancreatic cancer, gall bladder polyps, cardiology

* Has potential for further research in various types of cancer and image modality.
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Gastroenterology: Pancreatic cancer research

« Kwon, S., Kim, S., Hidalgo, M., Giovannucci, E.L., Markey, M.K., Bovik, A.C., Kwon, M.J., Kim, K.J., Im,
H., Park, J.Y., Bang, S., Park, S.W., Song, S.Y., & Chung, M.J.. Combined use of Lewis antigen phenotype
and carbohydrate antigen 19-9 concentration for prediction of survival in patients with pancreatic cancer.
Pancreas. 2020, Sep; Pub Status: Published.



Lewis antigen phenotype and survival of patients with pancreatic
cancer

* Study population: a hospital cohort study of 1187 patients diagnosed

with Pancreatic ductal adenocarcinoma (PDAC)

* Objective: To examine the association Lewis antigen phenotype and

survival of PDAC patients

* Measures: Comparison between machine learning vs Cox

proportional Hazards regression models to calculate HRs and Cls

Pancreas. 2020 Nov/Dec;49(10):1348-1354. doi: 10.1097/MPA.0000000000001687. PMID: 33122524,



Survival rate of patients with PDAC by Lewis antigen phenotype and CA 19-9 concentration

(a) CA 19-9 (low vs. high)
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Overall survival (%)
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CA19-9 low, reference
CA19-9 high, P<.001

CA19-9 low 408

CA19-9 high 779
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(c) CA19-9 and Lewis antigen
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(b) Lewis antigen
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Le(a+b-) 220
Le(a-b+) 592
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15 30 45 60
Time since diagnosis (Months)
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101 27 12 8

(d) Median survival rate classified
by CA 19-9 and Lewis antigen
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Cox proportional hazards regression model for mortality

Unadjusted survival model® HR (95% CI) P value
Lewis antigen
[.ewis antigen A positive | (reference)

Lewis antigen B positive 1.16 (0.95-1.43) 13
Lewis antigen negative 1.38 (1.12-1.72) 003
Adjusted survival model” HR (95% CI) P value

Lewis antigen
[.ewis antigen A positive 1 (reference)
Lewis antigen B positive 1.27 (1.03-1.57) 02
[.ewis antigen negative 1.65 (1.31-2.09) <.001

Abbreviations: HR, hazard ratio; Cl, confident interval.

aCox proportional hazards regression model was applied for HR and 95% CI for Lewis antigen phenotype (Lewis antigen A positive, Lewis antigen B positive, or Lewis antigen negative).

b Cox proportional hazards regression model was applied for multivariable-adjusted HR, 95% CI, and p-value after adjusting for serum Lewis antigen phenotype (Lewis antigen A positive,
Lewis antigen B positive, or Lewis antigen negative), serum CA 19-9 concentration (U/mL; log-scale), age (years), Body Mass Index (Kg/m?), sex (male or female), origin of cancer (head vs.

non-head), AJCC with liver metastasis (I, II, 11, IV without liver metastasis, or IV with liver metastasis), smoking history (smoker or non-smoker), and drinking history (drinker or non-
drinker).



GB polyp classification

* On-going project
* Classification of gall bladder polyp into adenoma vs polyp
* Pre-malighant lesion detection
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System design

Transfer Learning with Pretrained Network : : .
Fine-tuning last layers with

a transfer learning

A network for

‘ Classification between

Over a million images ‘
Over 1000 object categories HP vs. TSA

Freezing initial layers of a
pretrained network




ROC performance

Sensitivity
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Estimated probability

Prob: 62.13%/ Truth: 1

Prob: 47.74%/ Truth: 0
Prob: 43.73%/ Truth: 0

Prob: 4.431%/ Truth: 0 Prob: 9.513%/ Truth: 0

Prob: 17.88%/ Truth: 0 Prob: 7.111%/ Truth: 0

l Prob: 55%/ Truth: 1

Prob: 38.12%/ Truth: 0

Prob: 39.9%/ Truth: 0




Future work

Phase 1

Phase 2

Training Set

Yonsei dataset

Study Design
Build model
Analyze result

Test Set

Validation hospital
dataset

Performance check
Refine model

25



On going research

* Prediction of incidence of pancreatic cancer in type 2 DM pateints
using National insurance dataset



Thank you for your attention.



