Variational Interaction Information Maximization for Cross-domain Disentanglement

> HyeongJoo Hwang, Geon-Hyeong Kim Seunghoon Hong, Kee-Eung Kim KAIST

Cross-domain disentanglement learning

• Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

- Domain-specific representation Z^X and Z^Y, capturing exclusive factors of variations in domain X and Y
- Shared representation Z^s, capturing common factors shared across domains
- => Disentangled representations gives us

interpretability on both the data and the model.

Cross-domain disentanglement learning

Two data domains X,Y are paired according to some shared factors of variations.
 Ex) MNIST-CDCB

X: MNIST w/ Colored Background

Y: MNIST w/ Colored Digit

- Common factors of variation:
- Exclusive factors in X:
- Exclusive factors in Y:

Identity, shape, style of digits.

Color of the background.

Color of the digit.

Cross-domain disentanglement learning

• Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

 Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

- Domain-specific representation Z^x and Z^Y, capturing exclusive factors of variations in domain X and Y
- Shared representation Z^s, capturing common factors shared across domains

• Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

- Domain-specific representation Z^x and Z^Y, capturing exclusive factors of variations in domain X and Y
- Shared representation Z^s, capturing common factors shared across domains

Q1. How do we learn informative representation without labels?

 Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

- Domain-specific representation Z^x and Z^Y, capturing exclusive factors of variations in domain X and Y
- Shared representation Z^s, capturing common factors shared across domains

Q1. How do we learn informative representation without labels? A1. Learn a generative model to approximate p(x,y) using Z^x, Z^Y and Z^s

 Given a set of paired data (x,y) sampled from unknown joint distribution p(x,y), learn a structured representation that can be factorized into three parts

Q2. How do we enforce disentanglement constraints?

Enforcing factorization via regularization

• Add regularization on encoder (q) to enforce disentanglement

$$\max \mathcal{L} = \max_{p,q} \mathcal{L}_{ELBO}(p,q) + \lambda \cdot \frac{\mathcal{L}_{disentangle}(q)}{\mathcal{L}_{disentangle}(q)}$$

Desiderata of cross-domain disentanglement (imposed by regularization)

 Decomposition : the factors in Z^X and Z^Y should be exclusive to each domain, while all shared information is captured by Z^S

2. Disentanglement: the factors in Z^X , Z^Y and Z^S should be mutually exclusive

$$\max_{q} \mathcal{L}_{disentangle}(q) = 2 \cdot \underbrace{I(X;Y;Z^S)}_{} - \underbrace{I(Z^X;Z^S) - I(Z^Y;Z^S)}_{}$$

Interaction Information Mutual information(s)

$$\max_{q} \mathcal{L}_{disentangle}(q) = 2 \cdot I(X;Y;Z^{S}) - I(Z^{X};Z^{S}) - I(Z^{Y};Z^{S})$$

Interaction information:

The amount of information shared among three variables X, Y, and Z^S.

Imposing decomposition constraint

• Maximizing interaction information to encode shared information

encoding information shared between X and Y to Z^S

maximize
$$I(X;Y;Z^S) = I(X;Z^S) - I(X;Z^S|Y)$$

= $I(Y;Z^S) - I(Y;Z^S|X)$ (due to symmetry)

Imposing decomposition constraint

• Maximizing interaction information to encode shared information

encoding information shared between X and Y to Z^S

Z^s should encode maximum information shared between X and Y

$$\max_{q} \mathcal{L}_{disentangle}(q) = 2 \cdot I(X;Y;Z^S) - I(Z^X;Z^S) - I(Z^Y;Z^S)$$

Interaction information:

The amount of information shared among three variables X, Y, and Z^S. The maximization encourages Z^S to capture only the shared factors of variation.

=> Decomposition

$$\max_{q} \mathcal{L}_{disentangle}(q) = 2 \cdot I(X;Y;Z^S) - \underbrace{I(Z^X;Z^S)}_{\smile} - I(Z^Y;Z^S)$$

Mutual information:

The amount of information shared between two variables Z^{X} and Z^{S} . The minimization makes Z^{X} and Z^{S} independent.

$$\max_{q} \mathcal{L}_{disentangle}(q) = 2 \cdot I(X;Y;Z^S) - I(Z^X;Z^S) - \underbrace{I(Z^Y;Z^S)}_{\checkmark}$$

Mutual information:

The amount of information shared between two variables Z^{γ} and Z^{S} . The minimization makes Z^{γ} and Z^{S} independent. => Disentanglement

Comparing lower-bounds

• Lower-bound of VAE objective

 $\mathcal{L}_{ELBO}(p,q)$

- $\geq \mathbb{E}_{q(z^x|x)q(z^s|x,y)} \left[\log p(x|z^x, z^s) \right]$
- $+ \mathbb{E}_{q(z^y|y)q(z^s|x,y)} \left[\log p(y|z^y, z^s) \right]$
- $rac{D_{KL}\left[q(z^x|x)\|p(z^x)
 ight]}{p(z^x)}$
- $rac{D_{KL}\left[q(z^y|y)\|p(z^y)
 ight]}{p(z^y)}$
- $D_{KL}\left[q(z^s|x,y)\|p(z^s)
 ight]$

Lower-bound of regularization $\mathcal{L}_{\text{disentangle}}(p,q,r)$ $\geq \mathbb{E}_{q(z^s|x,y)q(z^x|x)} \left[\log p(x|z^x, z^s) \right]$ $+ \mathbb{E}_{q(z^s|x,y)q(z^y|y)} \left[\log p(y|z^y, z^s) \right]$ $-\frac{D_{KL}[q(z^{x}|x)||p(z^{x})]}{p(z^{x})}$ $- D_{KL}[q(z^{y}|y)||p(z^{y})]$ $\stackrel{\checkmark}{\rightharpoonup} D_{KL} \left[q(z^s | x, y) \| r^y(z^s | y) \right]$ $- D_{KL} \left[q(z^s | x, y) \| r^x(z^s | x) \right]$

Surprisingly, same terms appear in both objectives

• Objective function

• Advantages

$$\begin{aligned} \max_{p,q} \mathcal{L}_{ELBO}(p,q) + \lambda \cdot \mathcal{L}_{disentangle}(q) \\ \geq \max_{p,q,r} (1+\lambda) \cdot ELBO(p,q) \\ + \lambda \cdot D_{KL} \left[q(z^s | x, y) \| p(z^s) \right] \\ - \lambda \cdot \left(D_{KL} \left[q(z^s | x, y) \| r^y(z^s | y) \right] + D_{KL} \left[q(z^s | x, y) \| r^x(z^s | x) \right] \right). \end{aligned}$$

• Objective function

- Advantages
 - IIAE Introduces only two additional terms for regularization

$$\begin{aligned} \max_{p,q} \mathcal{L}_{ELBO}(p,q) + \lambda \cdot \mathcal{L}_{disentangle}(q) \\ \geq \max_{p,q,r} (1+\lambda) \cdot ELBO(p,q) \\ + \lambda \cdot D_{KL} \left[q(z^s | x, y) \| p(z^s) \right] \\ - \lambda \cdot \left(D_{KL} \left[q(z^s | x, y) \| r^y(z^s | y) \right] + D_{KL} \left[q(z^s | x, y) \| r^x(z^s | x) \right] \right). \end{aligned}$$

• Objective function

 $\max_{p,q} \mathcal{L}_{ELBO}(p,q) + \lambda \cdot \mathcal{L}_{disentangle}(q)$ $\geq \max_{p,q,r} (1+\lambda) \cdot ELBO(p,q)$ $+ \lambda \cdot D_{KL} [q(z^s|x,y) || p(z^s)]$

- Advantages
 - IIAE Introduces only two additional terms for regularization
 - Shared representation can be extracted by either x or y (it does not require both)

 $-\lambda \cdot \left(D_{KL} \left[q(z^{s}|x,y) \| \frac{r^{y}(z^{s}|y)}{r^{y}(z^{s}|y)} \right] + D_{KL} \left[q(z^{s}|x,y) \| \frac{r^{x}(z^{s}|x)}{r^{x}(z^{s}|x)} \right] \right).$

• Overall architecture:

Task 1: Cross-domain Image Translation

Task 2: Zero Shot – Sketch Based Image Retrieval

 $x \in X$

Compare

 $y \in Y$

Task 2: Zero Shot – Sketch Based Image Retrieval

	Feature	Evaluation metric		External knowledge		
Models	Dimension	mAP	P@100	Attr.	WordEmb.	WordNet [33]
SAE [23]	300	0.216	0.293	✓	1	-
FRWGAN [9]	512	0.127	0.169	\checkmark	-	-
ZSIH [38]	64	0.258	0.342	-	1	-
CAAE [22]	4096	0.196	0.284	-	-	-
SEM-PCYC [6]	64	0.349	0.463	-	\checkmark	\checkmark
LCALE [27]	64	0.476	0.583	-	\checkmark	-
IIAE	64	0.573	0.659	-	-	-

Table 3: Evaluation on the Sketchy Extended dataset [29, 37]. Attr and WordEmb stand for attribute information and word embedding respectively.