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Cross-domain disentanglement learning

e Given a set of paired data (Xx,y) sampled from unknown joint distribution p(Xx,y),

learn a structured representation that can be factorized into three parts

e Domain-specific representation Z* and 2",

capturing exclusive factors of variations in
domain X and Y
e Shared representation ZS, capturing common

factors shared across domains

=> Disentangled representations gives us

interpretability on both the data and the model.




Cross-domain disentanglement learning

e Two data domains X,Y are paired according to some shared factors of variations.
Ex) MNIST-CDCB
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e Common factors of variation: Identity, shape, style of digits.
e Exclusive factors in X: Color of the background.

e Exclusive factors in Y: Color of the digit.



Cross-domain disentanglement learning

e Given a set of paired data (Xx,y) sampled from unknown joint distribution p(Xx,y),

learn a structured representation that can be factorized into three parts

I zX: BG color of X
] 75 : Digit ID of X and Y
L]z Digit color of Y




Unsupervised cross-domain disentanglement learning

e Given a set of paired data (Xx,y) sampled from unknown joint distribution p(Xx,y),

learn a structured representation that can be factorized into three parts

e 6 a e Domain-specific representation Z* and 2",
capturing exclusive factors of variations in

domain X and Y

° ° e Shared representation ZS, capturing common
factors shared across domains
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Unsupervised cross-domain disentanglement learning

e Given a set of paired data (Xx,y) sampled from unknown joint distribution p(Xx,y),

learn a structured representation that can be factorized into three parts

e Domain-specific representation Z* and 2",
capturing exclusive factors of variations in

domain X and Y

e Shared representation ZS, capturing common

factors shared across domains

Q1. How do we learn informative representation without labels?
Al. Learn a generative model to approximate p(x,y) using ZX, Z¥ and Z5



Unsupervised cross-domain disentanglement learning

e Given a set of paired data (Xx,y) sampled from unknown joint distribution p(Xx,y),

learn a structured representation that can be factorized into three parts

e Domain-specific representation Z* and 2",
capturing exclusive factors of variations in

domain X and Y

e Shared representation ZS, capturing common

factors shared across domains

Q2. How do we enforce disentanglement constraints?



Enforcing factorization via regularization

e Add regularization on encoder (q) to enforce disentanglement

max L = II;EZX EELBO(pa Q) + A £dz’sefn,itcmgle(Q’)

Desiderata of cross-domain disentanglement (imposed by regularization)

1. Decomposition : the factors in Z* and Z¥ should be exclusive to each domain,
while all shared information is captured by ZS

2. Disentanglement: the factors in ZX, Z¥ and Z° should be mutually exclusive



Joint regularization

maXﬁdisentangle(Q) =2 I(Xa Ya ZS) _ I(ZX) ZS) o I(ZYJ ZS)
q
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Interaction Information  Mutual information(s)



Joint regularization

maXﬁdisentangle(Q) =2 I(Xa Y: ZS) _ I(ZXJ ZS) o I(ZYJ ZS)
q

N J
Y

Interaction information:

The amount of information shared among three variables X, Y, and ZS.



Imposing decomposition constraint

e Maximizing interaction information to encode shared information

encoding information shared between X and Y to Z5
maximize I(X;Y;2°)=1(X;2°) —1(X;Z"|Y)
=1(Y;2%) —1(Y;Z°X) (duetosymmetry)



Imposing decomposition constraint

e Maximizing interaction information to encode shared information
encoding information shared between X and Y to ZS
maximize I(X;Y;2°)=1(X;2°) -1 (X;Z°|Y)
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ZS should be informative to X l

\ Z5 should be also inferable from Y
/

ZS should encode maximum information shared between X and Y




Joint regularization

maXﬁdisentangle(Q) =2 I(Xa Y: ZS) _ I(ZXJ ZS) o I(ZYJ ZS)
q

N J
Y

Interaction information:

The amount of information shared among three variables X, Y, and ZS.
The maximization encourages ZS to capture only the shared factors of

variation.

=> Decomposition



Joint regularization

maXﬁdisentangle(Q) =2 I(Xa Ya ZS) _ I(Zxa ZS) o I(ZYJ ZS)
q

N\
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Mutual information:
The amount of information shared between two variables ZX and ZS.

The minimization makes ZX and ZS independent.



Joint regularization

maXﬁdisentangle(Q) =2 I(Xa Ya ZS) _ I(ZXJ ZS) o I(ZYJ ZS)
q

N\

~

Mutual information:
The amount of information shared between two variables ZY and ZS.
The minimization makes Z¥ and ZS independent.

=> Disentanglement



Comparing lower-bounds

e Lower-bound of VAE objective e Lower-bound of regularization
EELBO(pa Q) Edisentangle (’P, q, 7‘)
> Bg(erlz)q(e0 o) 108 P(2]2%,2°)] 1 2 Eq(elag)a(e=la) log p(2]27, 2°)]
+Eq(avy)g(erslen) logp(ylz®,2%)] 0 4 Egeejzg)a(anty) logp(yl2", 2%)]
— Dk [q(2"|2)|[p(2")] - — Dgrla(z"|2)||p(2")]
— D1 [9(2*]y)|lp(2Y)] - — Dk la(2%|y)|lp(zY)]

— Dk [q(2°|z,y)||p(2°)] \/— Dxkr [q(2°|z, y)[|r¥ (2°|y)]
= Drrla(@|z,y)lir* ("))

Surprisingly, same terms
appear in both objectives



Interaction Information AutoEncoder (I1AE)

e Objective function e Advantages

I%%IX EELBO (p, q) + A ﬁdz‘sentangle(Q)

>max(1l+ A)- ELBO(p,q)

+ X+ Dk [q(2°|z,y)||p(27)]
— X ( Drr g2z, y) 7Y (2°|y)] + Dkr lq(2° |2, ) |7 (2°|x)] ) -



Interaction Information AutoEncoder (I1AE)

e Objective function e Advantages

e IIAE Introduces only two
additional terms for regularization

I%%]X EELBO (p, Q) + A »Cdz'sentangle(Q)

>max(1l+ A)- ELBO(p,q)

+ X+ Dk [q(2°|z,y)||p(27)]
— X ( Drr[q(2°|z,y) 7Y (2°|y)] + Dkr lq(2° |2, ) |7 (2°|x)] ) .



Interaction Information AutoEncoder (I1AE)

e Objective function e Advantages

e IIAE Introduces only two
additional terms for regularization

max £ELBO (p, (]) + A »Cdz'sentangle(Q)
P,q e Shared representation can be

> max(l + )\) : ELBO(p, q) extracted by either x ory
p,q,T (it does not require both)

+ A+ Dgplq(2°|z,y)||p(2°)]
— A (Dkplq(z°|z, y)|r?(2°|y)] + Dk [q(z°|z, y)||r* (2°|x)] ) -



Interaction Information AutoEncoder (IIAE)

e OQverall
architecture:

feature extractor sampling latent variables
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Task 1:
Cross-domain
Image
Translation
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Task 2: Zero Shot — Sketch Based Image Retrieval

Query image Database image
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Task 2: Zero Shot — Sketch Based Image Retrieval

Feature Evaluation metric External knowledge
Models Dimension mAP P@100 Attr.  WordEmb. WordNet [33]

SAE [23] 300 0.216 0.293 v v -
FRWGAN [Y] 512 0.127 0.169 v - -
ZSIH [38] 64 0.258 0.342 - v -
CAAE [27] 4096 0.196 0.284 - - -
SEM-PCYC [6] 64 0.349 0.463 - v v
LCALE [27] 64 0.476 0.583 - v -
ITAE 64 0.573 0.659 - - -

Table 3: Evaluation on the Sketchy Extended dataset [2Y, 37]. Attr and WordEmb stand for attribute

information and word embedding respectively.



